Startseite Technik Preparation and characterization of dried cellulose nanofibrils
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation and characterization of dried cellulose nanofibrils

  • Jianping Ni , Chen Gong , Zhenghua Su und Chao Tian EMAIL logo
Veröffentlicht/Copyright: 18. August 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

One of the main manufacturing challenges is to obtain dried cellulose nanofibrils (CNFs) so that they can be cost effectively transported to customers. This work presents a study on using two methods of drying: freeze drying and spray drying; these dried CNFs were then characterized. The dried CNFs from either freeze drying or spray drying could not recover their original state after simple re-dispersion in water. Compared to spray dried CNFs, the microstructure of the freeze dried CNFs remained in a better shape. This was because the packing of nanofibrils as a result of freeze drying was not as tight as that from spray drying. It was demonstrated by the lower final mass residue and crystallinity of the freeze-dried CNFs, which led to better re-dispersion in water. X-ray diffractometry proved the occurrence of aggregation/hornification of the dried CNFs with increased crystallinity. Time-dependent sedimentation confirmed that the dried CNFs were incapable of forming stable water-re-dispersible suspensions.


Chao Tian, Ph D China National Pulp and Paper Research Institute Co., LTD Building 2, No. 4, Qiyang Road Chaoyang District Beijing, 100102 P. R. China Tel.: +86-10-64778086 Fax: +86-10-64778084 Web: www.cnppri.com

Funding statement: The authors gratefully acknowledge financial support from Demonstration of Hemicellulose Extraction Technology from Pulping Hydrolysate and Xylose Preparation (2017YFB0307904), the team project of Pulp and Environment Technology R&D Center at China National Pulp and Paper Research Institute Co., Ltd.

References

[1] M.S. Jahan, A. Saeed, Z.B. He, Y.H. Ni: Cellul. 18 (2010) 451. DOI:10.1007/s10570-010-9481-z10.1007/s10570-010-9481-zSuche in Google Scholar

[2] X. Qin, C. Duan, X. Feng, Y. Zhang, L. Dai, Y. Xu, Y. Ni: Bioresour. Technol. 320 (2021) 124283. PMid:33120062; DOI:10.1016/j.biortech.2020.12428310.1016/j.biortech.2020.124283Suche in Google Scholar PubMed

[3] R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood: Chem. Soc. Rev. 40 (2011) 3941. PMid:21566801; DOI:10.1039/c0cs00108b10.1039/c0cs00108bSuche in Google Scholar PubMed

[4] R. Prathapan, R. Thapa, G. Garnier, R.F. Tabor: Colloids Surf. A. 509 (2016) 11. DOI:. DOI:10.1016/j.colsurfa.2016.08.07510.1016/j.colsurfa.2016.08.075Suche in Google Scholar

[5] M.I. Voronova, A.G. Zakharov, O.Y. Kuznetsov, O.V. Surov: Mater. Lett. 68 (2012) 164. DOI:10.1016/j.matlet.2011.09.11510.1016/j.matlet.2011.09.115Suche in Google Scholar

[6] A. Khan, Y.B. Wen, T. Huq, Y.H. Ni: J. Agric. Food. Chem. 66 (2018) °. PMid:29251504; DOI:10.1021/acs.jafc.7b0420410.1021/acs.jafc.7b04204Suche in Google Scholar PubMed

[7] L. Dai, Y. Wang, X.J. Zou, Z.R. Chen, H. Liu, Y.H. Ni: Small. 16 (2020). PMid:32049432; DOI:10.1002/smll.20190656710.1002/smll.201906567Suche in Google Scholar PubMed

[8] M. Pääkkö, M. Ankerfors, H. Kosonen, A. Nykänen, S. Ahola, M. Österberg, J. Ruokolainen, J. Laine, P.T. Larsson, O. Ikkala, T. Lindström: Biomacromol. 8 (2007) 1934. PMid:17474776; DOI:10.1021/bm061215p10.1021/bm061215pSuche in Google Scholar PubMed

[9] T. Saito, Y. Okita, T.T. Nge, J. Sugiyama, A. Isogai: Carbohydr. Polym. 65 (2006) 435. DOI:10.1016/j.carbpol.2006.01.03410.1016/j.carbpol.2006.01.034Suche in Google Scholar

[10] R.A. Young: Cellul. 1 (1994) 107. DOI:10.1007/BF0081966210.1007/BF00819662Suche in Google Scholar

[11] C. Eyholzer, N. Bordeanu, F. Lopez-Suevos, D. Rentsch, T. Zimmermann, K. Oksman: Cellul. 17 (2010) 19. DOI:10.1007/s10570-009-9372-310.1007/s10570-009-9372-3Suche in Google Scholar

[12] M. Beaumont, J. König, M. Opietnik, P. Antje, R. Thomas: Cellul. 24 (2017) 1199. DOI:10.1007/s10570-016-1166-910.1007/s10570-016-1166-9Suche in Google Scholar

[13] J. Nemoto, T. Saito, A. Isogai: ACS Appl. Mater. Interfaces 7 (2015) 19809. PMid:26301859; DOI:10.1021/acsami.5b0584110.1021/acsami.5b05841Suche in Google Scholar PubMed

[14] K. Sakai, Y. Kobayashi, T. Saito, A. Isogai: Sci. Rep. 6 (2016) 20434. PMid:26830144; DOI:10.1038/srep2043410.1038/srep20434Suche in Google Scholar PubMed PubMed Central

[15] W. Abdelwahed, G. Degobert, S. Stainmesse, H. Fessi: Adv. Drug Deliv. Rev 58 (2006) 1688. PMid:17118485; DOI:10.1016/j.addr.2006.09.01710.1016/j.addr.2006.09.017Suche in Google Scholar PubMed

[16] B.B. Patel, J.K. Patel, S. Chakraborty: Recent Pat. Drug Deliv. Formul. 8 (2014) 63. PMid:24720661; DOI:10.2174/187221130866614021112201210.2174/1872211308666140211122012Suche in Google Scholar PubMed

[17] M.V.G. Zimmermann, C. Borsoi, A. Lavoratti, M. Zanini, A.J. Zattera, R.MC. Santana: J. Reinf. Plast. Compos. 0 (2016) 1. DOI:10.1177/073168441562628610.1177/0731684415626286Suche in Google Scholar

[18] Y.C. Peng, Y. Han, D.J. Gardner: Wood Fiber Sci. 44 (2012) 448. DOI:10.1093/treephys/tps07910.1093/treephys/tps079Suche in Google Scholar PubMed

[19] F. Jiang, Y.L. Hsieh: Carbohydr. Polym. 95 (2013) 32. PMid:23618236; DOI:10.1016/j.carbpol.2013.02.02210.1016/j.carbpol.2013.02.022Suche in Google Scholar PubMed

[20] P. Munier, K. Gordeyeva, L. Bergström, B.F. Andreas: Biomacro-molecules 17 (2016) 1875. PMid:27071304; DOI:10.1021/acs.biomac.6b0030410.1021/acs.biomac.6b00304Suche in Google Scholar PubMed

[21] L. Segal, J.J. Greely, A.E. Jr. Martin, C.M. Conrad: Text. Res. J. 29 (1959) 786. DOI:10.1177/00405175590290100310.1177/004051755902901003Suche in Google Scholar

[22] Y.C. Peng, D.J. Gardner, Y. Han: Cellul. 19 (2012) 91. DOI:10.1007/s10570-011-9630-z10.1007/s10570-011-9630-zSuche in Google Scholar

[23] E.L. Hult, P.T. Larsson, T. Iversen: Polym. 42 (2001) 3309. DOI:10.1016/S0032-3861(00)00774-610.1016/S0032-3861(00)00774-6Suche in Google Scholar

[24] H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, A. Isogai: Biomacromolecules 10 (2009) 162. PMid:19055320; DOI:10.1021/bm801065u10.1021/bm801065uSuche in Google Scholar PubMed

[25] H. Fukuzumi, T. Saito, Y. Okita, A. Isogai: Polym. Degrad. Stab. 95 (2010) 1502. DOI:10.1016/j.polymdegradstab.2010.06.01510.1016/j.polymdegradstab.2010.06.015Suche in Google Scholar

[26] J.Q. Han, C.J. Zhou, Y.Q. Wu, F.Y. Liu, Q.L. Wu: Biomacromolecules 14 (2013) 1529. PMid:23544667; DOI:10.1021/bm400173410.1021/bm4001734Suche in Google Scholar PubMed

[27] Y.C. Peng, D.J. Gardner, Y. Han, A. Kiziltas, Z.Y. Cai, M.A. Tshabalala: Cellul. 20 (2013) 2379. DOI:10.1007/s10570-013-0019-z10.1007/s10570-013-0019-zSuche in Google Scholar

[28] M.T.R. Bhuiyan, N. Hirai, N. Sobue: J. Wood Sci. 46 (2000) 431. DOI:10.1007/BF0076580010.1007/BF00765800Suche in Google Scholar

[29] W.J. Guo, Y. Wang, J.Q. Wan, Y.W. Ma: Carbohydr. Polym. 83 (2011) 1. DOI:10.1016/j.carbpol.2010.07.00910.1016/j.carbpol.2010.07.009Suche in Google Scholar

[30] Q.L. Meng, J.Q. Wan, Y.W. Ma, Y. Wang: Bioresour. 8 (2013) 2398. DOI:10.15376/biores.8.2.2398-241610.15376/biores.8.2.2398-2416Suche in Google Scholar

Received: 2020-10-16
Accepted: 2021-04-21
Published Online: 2021-08-18
Published in Print: 2021-08-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 2.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2020-8119/pdf
Button zum nach oben scrollen