DFT study of electronic and thermodynamic properties of gold-rich intermetallic compounds, Ce2Au2Cd and CeAu4Cd2
Abstract
Gold-rich rare earth intermetallic compounds (viz. Ce2Au2Cd and CeAu4Cd2) show unusual magnetic and physical properties, and they have extensive applications in electronic and mechanical industries due to their good electronic and thermal behavior with high mechanical strength. In the present research article, to take full advantage of technological importance of these materials, we have investigated the structural, electronic and thermodynamic properties of Ce2Au2Cd and CeAu4Cd2 ternary intermetallic compounds using density functional theory (DFT). The electronic band structure and density of state calculations show that Ce-f orbital electrons provide metallic character to both the compounds with strong hybridization of Au-p and Cd-p orbitals at the Fermi level. The effect of temperature has been studied on the various thermodynamic parameters using the quasi-harmonic Debye model. Thermodynamic properties show that CeAu4Cd2 compound has larger mechanical resistance (or high mechanical strength or hardness) and smaller randomness compared to Ce2Au2Cd with respect to temperature.
References
[1] C.L. Gan: Int. 31 (2014) 121. DOI:10.1108/MI-07-2013-003610.1108/MI-07-2013-0036Suche in Google Scholar
[2] V. Chidambaram, H.B. Yeung, G. Shan: J. Electron. Mater. 41 (2012) 2107. DOI:10.1007/s11664-012-2114-610.1007/s11664-012-2114-6Suche in Google Scholar
[3] N. Ning: Gold. Bull. 34 (2001) 77. DOI:10.1007/BF0321481810.1007/BF03214818Suche in Google Scholar
[4] T. Block, M. Johnscher, S. Linsinger, Ch. Rodewald Ute, R. Pöttgen: Z. Naturforsch 70 (2015) 135. DOI:10.1515/znb-2014-022510.1515/znb-2014-0225Suche in Google Scholar
[5] F. Tappe, R. Pöttgen: Rev. Inorg. Chem. 31 (2011) 5. DOI:10.1515/revic.2011.00710.1515/revic.2011.007Suche in Google Scholar
[6] S. Cotton, in: Lanthanide and Actinide Chemistry, John Wiley & Sons (2013).Suche in Google Scholar
[7] A. Murugan: J. Magn. Magn. Mater. 385 (2015) 441. DOI:10.1016/j.jmmm.2015.03.04210.1016/j.jmmm.2015.03.042Suche in Google Scholar
[8] R. Mishra, R. Pöttgen, R.D. Hoffman, D. Kaczorowski: Z. anorg. Allg. Chem. 627 (2001) 1283. DOI:10.1002/1521-3749(200106)627 : 6<1283::AID-ZAAC1283>3.0.CO;2-L10.1002/1521-3749(200106)627Suche in Google Scholar
[9] C. Paulsen, T. Block, C. Benndorf, O. Oeckler, J. Bönnighausen, O. Janka, R. Pöttgen: Z. Naturforsch. 75 (2020) 73. DOI:10.1515/znb-2019-015310.1515/znb-2019-0153Suche in Google Scholar
[10] P. Chai.J.D. Corbett: Inorg. Chem. 51 (2012) 3548. PMid:22364120; DOI:10.1021/ic202342v10.1021/ic202342vSuche in Google Scholar PubMed
[11] C.R. Celania: Novel gold intermetallics with unique properties and bonding patterns, Graduate Theses and, Dissertations, degree of doctor of Philosophy: Materials Science and Engineering, Iowa State University (2017). DOI:10.2172/141798610.2172/1417986Suche in Google Scholar
[12] M. Lukachuk, R. Pöttgen: Z. Kristallogr. 218 (2003) 767. DOI:10.1524/zkri.218.12.767.2054510.1524/zkri.218.12.767.20545Suche in Google Scholar
[13] S.E. Latturner, D. Bilc, J.R. Ireland, C.R. Kannewurf, S.D. Mahanti, M.G. Kanatzidis: J. Sol. St. Chem. 170 (2003) 48. DOI:10.1016/S0022-4596(02)00006-310.1016/S0022-4596(02)00006-3Suche in Google Scholar
[14] F.D. Murnaghan: Proc. Nat. Acad. Sci. U.S.A.3 (1944) 244. DOI:10.1073/pnas.30.9.24410.1073/pnas.30.9.244Suche in Google Scholar PubMed PubMed Central
[15] G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, L. Nordström: Phys. Rev. B. 64 (2001) 195134. DOI:10.1103/PhysRevB.64.19513410.1103/PhysRevB.64.195134Suche in Google Scholar
[16] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowsk, F. Tran, L. Marks: WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Techn. Universitat (2019).Suche in Google Scholar
[17] J.P. Perdew, K. Burke, M. Ernzerhof: Phys. Rev. Lett. 77 (1996) 3865. PMid:10062328; DOI:10.1103/PhysRevLett.77.386510.1103/PhysRevLett.77.3865Suche in Google Scholar PubMed
[18] A. Otero-de-la-Roza, D. Abbasi-Pérez, V. Luaña: Comput. Phys. Comm. 182 (2001) 2232. DOI:10.1016/j.cpc.2011.05.00910.1016/j.cpc.2011.05.009Suche in Google Scholar
[19] A. Otero-de-la-Roza, V. Luaña: Phys. Rev. B 84 (2011) 184103. DOI:10.1103/PhysRevB.84.02410910.1103/PhysRevB.84.024109Suche in Google Scholar
[20] A.L. Wasserman: in Reference Module in Materials Science and Materials Engineering (2017).Suche in Google Scholar
[21] W.A. Harrison: Electronic Structure and the Properties of Solids (1989).Suche in Google Scholar
[22] J. Diani, B. Fayolle, P. Gilormini: Taylor & Francis 34 (2008) 1143. DOI:10.1080/0892702080199338810.1080/08927020801993388Suche in Google Scholar
[23] C. Li, Z. Wang: Advances in Science and Technology of Mn+1AXn Phases, 1st edition (2012).Suche in Google Scholar
[24] Pohl, O. Robert: Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York (2014).Suche in Google Scholar
[25] S. Rayaprol, R. Pöttgen: Phys. Rev. B 72 (2005) 214435. DOI:10.1103/PhysRevB.72.21443510.1103/PhysRevB.72.214435Suche in Google Scholar
[26] L. Lou: Introduction to Phonons and Electrons, World Scientific Publishing, Singapore (2003). DOI:10.1142/532710.1142/5327Suche in Google Scholar
[27] M. Biron: Detailed Accounts of Thermoplastics and Thermoplastic Composites (Third Edition) (2018). DOI:10.1016/B978-0-08-102501-7.00004-710.1016/B978-0-08-102501-7.00004-7Suche in Google Scholar
[28] N. Shulumba: Vibrations in solids from first principles lattice dynamics to high temperature phase stability Nanostructured Materials, Department of Physics, Chemistry and Biology, Linköping University, Sweden (2015). DOI:10.3384/diss.diva-12294910.3384/diss.diva-122949Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Artikel in diesem Heft
- Contents
- Original
- Grain refinement mechanism of rapidly solidified nickel alloys
- Microstructural evolution and properties of tungsten inert gas and fiber laser welded SUS445 ferritic stainless steel
- Microstructural evolution of an Al–Mg–Si–Mn– Fe alloy due to Ti and P addition
- Effects of Zr and Sc additions on precipitation of α-Al(FeMn)Si dispersoids under various heat treatments in Al–Mg–Si AA6082 alloys
- Si3N4/Graphene binary particles reinforced hybrid titanium composites and their characterization
- Phase relationships in the Fe-rich region of the Ce–Nd–B–Fe quaternary system at 773 K
- Enthalpies of mixing in ternary Al–Gd–Mn liquid alloys
- DFT study of electronic and thermodynamic properties of gold-rich intermetallic compounds, Ce2Au2Cd and CeAu4Cd2
- Conventional synthesis of perovskite structured LaTixFe1-xO3: A comprehensive evaluation on phase formation, opto-magnetic, and dielectric properties
- Notifications
- News
Artikel in diesem Heft
- Contents
- Original
- Grain refinement mechanism of rapidly solidified nickel alloys
- Microstructural evolution and properties of tungsten inert gas and fiber laser welded SUS445 ferritic stainless steel
- Microstructural evolution of an Al–Mg–Si–Mn– Fe alloy due to Ti and P addition
- Effects of Zr and Sc additions on precipitation of α-Al(FeMn)Si dispersoids under various heat treatments in Al–Mg–Si AA6082 alloys
- Si3N4/Graphene binary particles reinforced hybrid titanium composites and their characterization
- Phase relationships in the Fe-rich region of the Ce–Nd–B–Fe quaternary system at 773 K
- Enthalpies of mixing in ternary Al–Gd–Mn liquid alloys
- DFT study of electronic and thermodynamic properties of gold-rich intermetallic compounds, Ce2Au2Cd and CeAu4Cd2
- Conventional synthesis of perovskite structured LaTixFe1-xO3: A comprehensive evaluation on phase formation, opto-magnetic, and dielectric properties
- Notifications
- News