Abstract
Biosynthesis of metal oxide nanoparticles is an emerging eco-friendly approach. Currently, researchers have been developing various nanomaterials with effective antimicrobial properties with less toxicity to humans. Here, nanostructured ceria or cerium oxide nanoparticles of average crystallite size ∼5 nm are synthesized by a chemical co-precipitation method using cerium nitrate hexa hydrate and sodium hydroxide as starting materials. The most fascinating bio-material known to man, deoxyribo nucleic acid (DNA) is used as a biological capping agent to get well dispersed nanoparticles. The structural and morphological characterization of prepared samples was conducted using X-ray diffraction, high resolution transmission electron microscopy and Fourier transform infrared spectroscopy. The synthesized cerium oxide nanoparticle showed potential antibacterial activity against both bacteria and fungi under investigation. The results also showed that the synthesized nanoceria can be used to inhibit the growth of several fungi which will be useful for a number of applications in the biomedical field.
Funding statement: The authors acknowledge their sincere thanks to SAIF cochin and Biogenix, Thiruvananthapuram for characterization.
References
[1] S. Rajesh Kumar, Poonam: Biotechnology Reports 17 (2017) 1. PMid:28580302; DOI:10.1016/j.btre.2017.11.00810.1016/j.btre.2017.11.008Suche in Google Scholar
[2] M. Sack, L. Alili, E. Karaman, S. Das, A. Gupta, S. Seal, P. Brenneisen: Mol. Cancer Ther. 13 (2014) 1740. PMid:24825856; DOI:10.1158/1535-7163.MCT-13-095010.1158/1535-7163.MCT-13-0950Suche in Google Scholar
[3] S. Singh, A. Ly, S. Das, T.S. Sakthivel, S. Barkam, S. Seal: Artif. CellsNanomed. Biotechnol. 46 (2018) 956. PMid:30314412; DOI:10.1080/21691401.2018.152181810.1080/21691401.2018.1521818Suche in Google Scholar
[4] S. Barkam, J. Ortiz, S. Saraf, N. Eliason, R. Mccormack, S. Das, A. Gupta, C. Neal, A. Petrovici, C. Hanson, M.D. Sevilla, A. Adhikary, S. Seal: The Journal of Physical Chemistry C 2017121 (36), 20039–20050. PMid:28936278; DOI:10.1021/acs.jpcc.7b0572510.1021/acs.jpcc.7b05725Suche in Google Scholar
[5] C. Zgheib, S.A. Hilton, L.C. Dewberry, M.M. Hodges, S. Ghatak, J. Xu, S. Singh, S. Roy, C.K. Sen, S. Seal, K.W. Liechty: J. Am. Coll. Surg. 228 (2019) 107. PMid:30359833; DOI:10.1016/j.jamcollsurg.2018.09.01710.1016/j.jamcollsurg.2018.09.017Suche in Google Scholar
[6] R.S. Vardanyan, V.J. Hruby: Synthesis of Essential Drugs 425 (2006). DOI:10.1016/B978-044452166-8/50032-710.1016/B978-044452166-8/50032-7Suche in Google Scholar
[7] M. Kolar, K. Urbanek, T. Latal: Int. J. Antimicrob. Ag. 17 (2001) 357. DOI:10.1016/S0924-8579(01)00317-X10.1016/S0924-8579(01)00317-XSuche in Google Scholar
[8] J.K. Fard, S. Jafari, M.A. Eghbal: Adv. Pharm. Bull. 5 (2015) 447. PMid:26819915; DOI:10.15171/apb.2015.06110.15171/apb.2015.061Suche in Google Scholar PubMed PubMed Central
[9] L. Zhang, S. Zhou, A. Pan, J. Li, B. Liu: Int. J. of Infectious Diseases 33 (2015) 1. PMid:25541294; DOI:10.1016/j.ijid.2014.12.03310.1016/j.ijid.2014.12.033Suche in Google Scholar PubMed
[10] A.P.F. Isabela, C.L.S. Carlos, C.S. Fábio: BioMed. Research Int. 1923606 (2018).Suche in Google Scholar
[11] N.M. Zholobak, V.K. Ivanov, A.B. Shcherbakov: Nanobiomaterials in antimicrobial therapy: applications of nanobiomaterials. New York, Elsevier Inc (2016).Suche in Google Scholar
[12] A. Thill, O. Zeyons, O. Spalla, F. Chauvat, J. Rose, M. Aufan: Environ. Sci. Technol. 40 (19) (2006) 6151. PMid:17051814; DOI:10.1021/es060999b10.1021/es060999bSuche in Google Scholar PubMed
[13] C. Guozhong: Nano structures and Nano materials, Imperial College Press, London (2004).Suche in Google Scholar
[14] Y. Yong, S. Yonghai, W. Li: Nanotechnology 19 (2008) 405601. PMid:21832687; DOI:10.1088/0957-4484/19/40/40560110.1088/0957-4484/19/40/405601Suche in Google Scholar PubMed
[15] W.U. David: Encyclopedia of life sciences, Macmillan Publishers Ltd, Nature publishing Group (2002).Suche in Google Scholar
[16] B. Nithyaja, H. Misha, V.P.N. Nampoothiri: Nano sci. and Nanotech. 2 (2012) 99. DOI:10.5923/j.nn.20120204.0210.5923/j.nn.20120204.02Suche in Google Scholar
[17] National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility tests. Approved standard. NCCLS document M2-A5. Wayne, Pa: National Committee for Clinical Laboratory Standards, 1993.Suche in Google Scholar
[18] E.G. Heckert, S. Seal, W.T. Self: Environ. Sci.Technol. 42 (2008) 5014. PMid:18678042; DOI:10.1021/es800150810.1021/es8001508Suche in Google Scholar PubMed PubMed Central
[19] K.K. Babitha, A. Sreedevi, K.P. Priyanka, B. Sabu, V. Thomas: In. J. Pure Appl. Phys.53(2015)596.Suche in Google Scholar
[20] P. Reshma, K.J. Ashwini: Nanomater. Mol. Nanotechnol. 6 (2017) 2. DOI:10.4172/2324-8777.100021910.4172/2324-8777.1000219Suche in Google Scholar
[21] B.D. Cullity (3rd Edn): Elements of X-ray Diffraction, Prentice Hall, New Jersey (2001).Suche in Google Scholar
[22] H.R. Tan, J.P.Y. Tan, C. Boothroyd, T.W. Hansen, Y.L. Foo, M.J. Lin: J. of Phys. Chem. 116 (2012) 242. PMid:23176640; DOI:10.1021/jp208432z10.1021/jp208432zSuche in Google Scholar PubMed
[23] Y. Han, L. Han, Y. Yao, Y. Li, X. Liu: Analytical Methods 10 (2018) 2436. DOI:10.1039/C8AY00386F10.1039/C8AY00386FSuche in Google Scholar
[24] R.C. Deus, C.R. Foschini, B. Spitova, F. Moura, E. Longo, A.Z. Simoes: Ceram. Intern. 40 (2014). DOI:10.1016/j.ceramint.2013.06.04310.1016/j.ceramint.2013.06.043Suche in Google Scholar
[25] J.T. Seil, T.J. Webster: Int Journal of Nanomedicine 7 (2012) 2767. PMid:22745541; DOI:10.2147/IJN.S2480510.2147/IJN.S24805Suche in Google Scholar PubMed PubMed Central
[26] dos Santos, C.C.L., Passos Farias, I.A., Reis Albuquerque, A.d.J.d: BMC Proc 8, P48 (2014). DOI:10.1186/1753-6561-8-S4-P4810.1186/1753-6561-8-S4-P48Suche in Google Scholar
[27] Y.N. Slavin, J. Asnis, U.O. Hafeli, H. Bach: J. of Nanobiotechnology 15 (2017) 65. PMid:28974225; DOI:10.1186/τ12951-017-0308-z10.1186/τ12951-017-0308-zSuche in Google Scholar
[28] S. Munusamy, K. Bhakyaraj, L. Vijayalakshmi, A. Stephen, V. Narayanan: Int. J. Innov. Res. Sci. Eng. 2 (2014) 318.Suche in Google Scholar
[29] S.K. Kannan, M. Sundrarajan: Int. J. Nanosci. 13 (2014) 1450018. DOI:10.1142/S0219581X1450018510.1142/S0219581X14500185Suche in Google Scholar
[30] E. Alpaslan, B. Geilich, H. Yazici: Sci. Rep. 7, 45859 (2017). PMid:28387344; DOI:10.1038/srep4585910.1038/srep45859Suche in Google Scholar PubMed PubMed Central
[31] M.A. Dar, R. Gul, A.A. Alfadda, M.R. Karim, D.W. Kim, C.L. Cheung: Sci. Adv. Mater. 9 (2017) 1248. DOI:10.1166/sam.2017.309810.1166/sam.2017.3098Suche in Google Scholar
[32] I.A. Kartsonakis, P. Liatsi, I. Daniilidis, G. Kordas: J. Am. Ceram. Soc. 91 (2008) 372. DOI:10.1111/j.1551-2916.2007.02088.x10.1111/j.1551-2916.2007.02088.xSuche in Google Scholar
[33] K. Krishnamoorthy, M. Veerapandian, L.H. Zhang, K. Yun, S.J. Kim: J. Ind. Eng. Chem. 20 (5) (2014) 3513. DOI:10.1016/j.jiec.2013.12.04310.1016/j.jiec.2013.12.043Suche in Google Scholar
[34] N. Thakur, P. Manna, J. Das: J. Nanobiotechnol. 17 (2019) 84. PMid:31291944; DOI:10.1186/τ12951-019-0516-910.1186/τ12951-019-0516-9Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Artikel in diesem Heft
- Contents
- Editorial
- International Conference on Energy and Environment
- Original Contributions
- Supercapacitor electrodes based on modified titania nanotube arrays on flexible substrates
- A promising rosy future for supercapacitors: Suitability of MoS2 hollow nanoroses for supercapacitor electrodes
- Efficient photoluminescence from 1-(2-Naphthoyl)-3,3,3-trifluroacetonate complex of Eu3+ with bidentate neutral donors
- Novel homo-epitaxial approaches in solvothermal synthesis for preparing surface tethered uni-directionally oriented zinc oxide micro and nano structured arrays
- Bio-synthesis, characterization and antibacterial studies of ZnO nanoparticles
- Surfactant assisted one-pot synthesis of copper nanoparticle arrays and their hydrogenation efficiency
- Synthesis and characterization of nano NiZrO3 for optical and dielectric applications
- Lactose monohydrate (C12H22O11 · H2O) mediated synthesis and spectral analysis of nanocrystalline Ni0.5Cu0.5Fe2O4
- The antimicrobial efficacy of biosynthesized nanostructured ceria
- Synthesis and evaluation of chloro SPIRO and amino SPIRO supports: Novel hydrophilic cross-linked polystyrene polymers for solid phase peptide synthesis
- Notifications
- DGM News
- Author index
- Keyword index
Artikel in diesem Heft
- Contents
- Editorial
- International Conference on Energy and Environment
- Original Contributions
- Supercapacitor electrodes based on modified titania nanotube arrays on flexible substrates
- A promising rosy future for supercapacitors: Suitability of MoS2 hollow nanoroses for supercapacitor electrodes
- Efficient photoluminescence from 1-(2-Naphthoyl)-3,3,3-trifluroacetonate complex of Eu3+ with bidentate neutral donors
- Novel homo-epitaxial approaches in solvothermal synthesis for preparing surface tethered uni-directionally oriented zinc oxide micro and nano structured arrays
- Bio-synthesis, characterization and antibacterial studies of ZnO nanoparticles
- Surfactant assisted one-pot synthesis of copper nanoparticle arrays and their hydrogenation efficiency
- Synthesis and characterization of nano NiZrO3 for optical and dielectric applications
- Lactose monohydrate (C12H22O11 · H2O) mediated synthesis and spectral analysis of nanocrystalline Ni0.5Cu0.5Fe2O4
- The antimicrobial efficacy of biosynthesized nanostructured ceria
- Synthesis and evaluation of chloro SPIRO and amino SPIRO supports: Novel hydrophilic cross-linked polystyrene polymers for solid phase peptide synthesis
- Notifications
- DGM News
- Author index
- Keyword index