Abstract
Maraging steels based on iron –nickel martensite constitute a very important family of high-strength steels, which distinguishes itself by demonstrating an unparalleled combination of excellent fabricability and high strength and fracture toughness after heat treatment. Heat treatment of these steels has now been perfected to ensure consistently high levels of strength, ductility, and toughness in a variety of product shapes and sizes. Cobalt-free variants have been commercialized as part of efforts to save production costs. Further knowledge has been generated on 18% nickel maraging steels regarding phases precipitating during aging, thermal embrittlement, thermal cycling and austenite reversion/retention and their effect on mechanical properties. The paper reviews the progress made over the last one and half decades.
References
[1] R.F. Decker, S. Floreen, in: R.K. Wilson (Ed.), Maraging Steels: Recent Developments and Applications, The Minerals, Metals & Materials Society, Warrendale, Pennsylvania (1988) 1.Search in Google Scholar
[2] M. Nageswar Rao, in: R. Gnanamoorthy, M. Kamaraj, Y. Mutoh, S. Senthilvelan (Eds.), Proc. Indo Japan Conf. Damage Tolerant design and Materials, Chennai (2004) 65.Search in Google Scholar
[3] Y. He, K. Yang, W. Qu, F. Kong, G. Su: Materials Letters 56 (2002) 763.10.1016/S0167-577X(02)00610-9Search in Google Scholar
[4] S. Floreen: Met. Reviews 13 (1968) 115.10.1179/imr.1968.13.1.115Search in Google Scholar
[5] R.K. Wilson (Ed.): Maraging Steels: Recent Developments and Applications, The Minerals, Metals & Materials Society, Warrendale, Pennsylvania (1988).Search in Google Scholar
[6] S. Floreen, A.M. Bayer, in: R.K. Wilson (Ed.), Maraging Steels: Recent Developments and Applications, The Minerals, Metals & Materials Society, Warrendale, Pennsylvania (1988) 39.Search in Google Scholar
[7] F.K. Lampson, W.S. Crownover, in: R.K. Wilson (Ed.), Maraging Steels: Recent Developments and Applications, The Minerals, Metals & Materials Society,Warrendale, Pennsylvania (1988) 55.Search in Google Scholar
[8] R.K. Wilson, D.F. Smith, L.G. Coffee, J.S. Smith, T.H. Bassford, in: R.K. Wilson (Ed.), Maraging Steels: Recent Developments and Applications, The Minerals, Metals & Materials Society, Warrendale, Pennsylvania (1988) 93.Search in Google Scholar
[9] Y. He, K. Yang, W. Sha, D.J. Cleland: Metall. Mater. Trans. A 35 (2004) 2747.10.1007/s11661-004-0221-6Search in Google Scholar
[10] Y. He, K. Yang, W. Sha: Metall. Mater. Trans. A 36 (2005) 2273.10.1007/s11661-005-0100-9Search in Google Scholar
[11] Allvac – An Allegheney Technologies Company – Technical data sheet on Vascomax nickel maraging alloys.Search in Google Scholar
[12] Allvac – An Allegheney Technologies Company – Technical data sheet on C-200/C-250/C-300/C-3.Search in Google Scholar
[13] W.A. Spitzig, J.M. Chilton, C.J. Barton: ASM Trans. Q 61 (1968) 635.10.1177/003591576806100654Search in Google Scholar
[14] J.B. Lecompte, C. Servant, G. Cizon: J. Mater. Sci. 20 (1985) 3339.10.1007/BF00545204Search in Google Scholar
[15] V.K. Vasudevan, S.J. Kim, C.M. Wayman, in: R.K. Wilson (Ed.), Maraging Steels: Recent Developments and Applications, The Minerals, Metals & Materials Society, Warrendale, Pennsylvania (1988) 283Search in Google Scholar
[16] D.M. Vanderwalker, in: R.K. Wilson (Ed.), Maraging Steels: Recent Developments and Applications, The Minerals, Metals & Materials Society, Warrendale, Pennsylvania (1988) 255.Search in Google Scholar
[17] N. Bouzid, C. Servant, O. Lyon: Phil. Mag. B 57 (1988) 343.10.1080/13642818808208508Search in Google Scholar
[18] V.K. Vasudevan, S.J. Kim, C.M. Wayman: Metall. Trans. A 21 (1990) 2655.10.1007/BF02646061Search in Google Scholar
[19] U.K. Viswanathan, G.K. Dey, M.K. Asundi: Metall. Trans. A 24 (1993) 2429.10.1007/BF02646522Search in Google Scholar
[20] R. Tewari, S. Mazumder, I.S. Batra, G.K. Dey, S. Banerjee: Acta Mater. 48 (2000) 1187.10.1016/S1359-6454(99)00370-5Search in Google Scholar
[21] W. Sha, A. Cerezo, G.D.W. Smith: Scripta Metall. Mater. 26 (1992) 517.10.1016/0956-716X(92)90276-KSearch in Google Scholar
[22] W. Sha, A. Cerezo, G.D.W. Smith: Scripta Metall. Mater. 26 (1992) 523.10.1016/0956-716X(92)90277-LSearch in Google Scholar
[23] W. Sha, G.D.W. Smith, A. Cerezo: Surface Science 266 (1992) 378.10.1016/0039-6028(92)91049-HSearch in Google Scholar
[24] W. Sha, A. Cerezo, G.D.W. Smith: Metall. Trans. A 24 (1993) 1221.10.1007/BF02668190Search in Google Scholar
[25] W. Sha, A. Cerezo, G.D.W. Smith: Metall. Trans. A 24 (1993) 1233.10.1007/BF02668191Search in Google Scholar
[26] W. Sha, A. Cerezo, G.D.W. Smith: Metall. Trans. A 24 (1993) 1241.10.1007/BF02668192Search in Google Scholar
[27] W. Sha, A. Cerezo, G.D.W. Smith: Metall. Trans. A 24 (1993) 1251.10.1007/BF02668193Search in Google Scholar
[28] X.D. Li, Z.D. Yin, H.B. Li, T.C. LeiM. L. Liu, X.W. Liu, M.Z. Jin: Materials Chemistry and Physics 33 (1993) 277.10.1016/0254-0584(93)90075-WSearch in Google Scholar
[29] C. Servant, N. Bouzid: Phil. Mag. B 60 (1989) 659.10.1080/13642818908206046Search in Google Scholar
[30] P.P. Sinha, K.T. Tharian, K. Sreekumar, K.V. Nagarajan, D.S. Sarma: Mater. Sci. Tech. 14 (1998) 1.10.1179/mst.1998.14.1.1Search in Google Scholar
[31] A. Goldberg: Trans. ASM 61 (1968) 26.10.1590/S0004-282X1968000100009Search in Google Scholar
[32] U.K. Viswanathan, R. Kishore, M.K. Asundi: Metall. Mater. Trans. A 27 (1996) 757.10.1007/BF02648963Search in Google Scholar
[33] M. Farooque, H. Ayub, A. Ul Haq, A.Q. Khan: Mater. Trans. JIM 39 (1998) 995.10.2320/matertrans1989.39.995Search in Google Scholar
[34] I.N. Qureshi, M. Farooque, in: M.A. Khan, K.Hussain, A.Q. Khan. (Eds.), Advanced Materials-99, Proceedings of the International Symposium on Advanced Materials, A.Q. Khan Research Laboratories Kahuta, Rawalpindi, Pakistan (1999) 290.Search in Google Scholar
[35] N. Bouzid, C. Servant, G. Cizeron: Acta. Metall. 36 (1988) 1527.10.1016/0001-6160(88)90220-9Search in Google Scholar
[36] G. Saul, J.P. Robertson, A.M. Adair: Met. Trans. 1 (1970) 700.10.1007/BF02811546Search in Google Scholar
[37] K. Nakazawa, Y. Kawabe, S. Muneki: Mater. Sci. Eng. 33 (1978) 49.10.1016/0025-5416(78)90152-0Search in Google Scholar
[38] P.P. Sinha, K. Sreekumar, N.S. Babu, B. Pant, A. Natarajan, K.V. Nagarajan: J. Heat Treating 9 (1992) 125.10.1007/BF02833148Search in Google Scholar
[39] P.P. Sinha, D. Sivakumar, T. Tharian, K.V. Nagarajan, D.S. Sarma: Mater. Sci. Tech. 12 (1996) 945.10.1179/mst.1996.12.11.945Search in Google Scholar
[40] R. Kapoor, I.S. Batra: Mater. Sci. Eng. A 371 (2004) 324.10.1016/j.msea.2003.12.023Search in Google Scholar
[41] B.G. Reisdorf, A.J. Birkle, P.H. Salmon Cox Report AFML-TR64-364, Air Force Materials Laboratory, OH USA (1965).Search in Google Scholar
[42] D. Kalish, H.J. Rack: Metall. Trans. 2 (1971) 2665.10.1007/BF02814910Search in Google Scholar
[43] W.C. Johnson, D.F. Stein: Metall. Trans. 5 (1974) 549.10.1007/BF02644648Search in Google Scholar
[44] C.J. Barton, B.G. Reisdorf, P.H. Salmon Cox, J.M. Chilton, C.E. Oskin, Jr.: Tech. Rep. No. 34, Wright Patterson Air Force Base, OH USA (1967).Search in Google Scholar
[45] E. Nes, G. Thomas: Metall. Trans. A 7 (1976) 967.10.1007/BF02644062Search in Google Scholar
[46] Y. Ashida, H. Hato, K. Ishihara, K. Hosomi: Suiyokaishi 20 (1987) 513.Search in Google Scholar
[47] G.N. Maniar, H.M. James: Metallography 7 (1974) 505.10.1016/0026-0800(74)90017-2Search in Google Scholar
[48] H.J. Rack, P.H. Holloway: Metall. Trans. A 8 (1977) 1313.10.1007/BF02643847Search in Google Scholar
[49] H. Chandra-Holm, M. Bichsel, P. Uggowitzer: Scripta Metall. 18 (1984) 373.10.1016/0036-9748(84)90456-3Search in Google Scholar
[50] R.D.K. Misra, T.V. Balasubramanian, P. Rama Rao: J. Mater. Sci. Letters 6 (1987) 125.10.1007/BF01728960Search in Google Scholar
[51] Y. He, K. Yang,W.-S. Qu, F.Y. Kang, G.Y. Su: Mater. Sci. Tech 19 (2003) 117.10.1179/026708303225008969Search in Google Scholar
[52] V.K. Gupta, M. Chatterjee: Adv. Mater. Proc. 138 (1990) 90.Search in Google Scholar
[53] V.K. Gupta, M. Chatterjee, R.P. Bhat: Trans. Ind. Inst. Met. 43 (1990) 129.Search in Google Scholar
[54] H. Zechmeister, H. Zeilinger, K. Gunter: Arch. Eisenhüttenwes. 49 (1978) 489.10.1002/srin.197804668Search in Google Scholar
[55] T. Maki, H. Morimoto, I. Morimoto: Trans. ISIJ 20 (1980) 207.10.2355/isijinternational1966.20.207Search in Google Scholar
[56] K. Kuribayashi, R. Horiuchi, in: R.K. Wilson (Ed.), Maraging Steels: Recent Developments and Applications, The Minerals, Metals & Materials Society, Warrendale, Pennsylvania (1988) 157.Search in Google Scholar
[57] K. Sivasubramanian, P.N. Mohanty, A.K.S. Shenoy, M. Nageswara Rao: Metal News 17 No. 3 (1995) 6.Search in Google Scholar
[58] ASM Handbook Volume 4 Heat Treating, ASM International, Materials Park, Ohio (1991) 223.Search in Google Scholar
[59] R.N. Ray, K. Sivasubramanian, M. Nageswara Rao: J. Non-destructive Evaluation 21 (2001) 55.Search in Google Scholar
[60] P.P. Sinha, K. Sreekumar, A. Natarajan, K.V. Nagarajan: J. Mater. Sci. 26 (1991) 4155.10.1007/BF02402961Search in Google Scholar
[61] D.S. Sarma, P.P. Sinha: Trans. Indian Inst. Met. 49 (1996) 163.Search in Google Scholar
[62] S. Floreen, R.F. Decker: Trans. ASM 55 (1962) 518.10.1177/003591576205500631Search in Google Scholar
[63] G.W. Tuffnel, R.L. Cairns: Trans. ASM 61 (1968) 798.Search in Google Scholar
[64] H.J. Rack: Mater. Sci. Eng. 34 (1978) 263.10.1016/0025-5416(78)90058-7Search in Google Scholar
[65] A. Goldberg: Trans. ASM 62 (1969) 219.Search in Google Scholar
[66] P.P. Sinha, T. Tharian, D. Sivakumar, D.S. Sarma: Steel Res. 65 (1994) 494.10.1002/srin.199401200Search in Google Scholar
[67] H.J. Rack: Scripta Metall. 13 (1979) 577.10.1016/0036-9748(79)90112-1Search in Google Scholar
[68] G.W. Tuffnel, D.L. Pasquine, J.H. Olson: ASM Trans. Quart. 59 (1966) 769.Search in Google Scholar
[69] T. Yasunaka, T. Araki: J. Japan Inst. Metals 36 (1972) 1202.10.2320/jinstmet1952.36.12_1202Search in Google Scholar
[70] T. Yasunaka, T. Araki: J. Japan Inst. Metals 38 (1974) 877.10.2320/jinstmet1952.38.9_877Search in Google Scholar
[71] D. Webster: ASM Trans. 61 (1968) 816.10.1017/S002185960006559XSearch in Google Scholar
[72] N. Kenyon: Weld. J. 47 (1968) 193.Search in Google Scholar
[73] C.S. Carter: Metall. Trans. 2 (1971) 1621.10.1007/BF02913885Search in Google Scholar
[74] H.J. Rack, D. Kalish: Metall. Trans. 2 (1971) 3011.10.1007/BF02814948Search in Google Scholar
[75] C.A. Pampillo, H.W. Paxton: Metall. Trans. 3 (1972) 2895.10.1007/BF02652858Search in Google Scholar
[76] M. Moriyama, S.J. Takaki: International Journal of Fatigue 19 (1997) 266.10.1016/S0142-1123(97)83295-1Search in Google Scholar
[77] U.K. Viswanathan, G.K. Dey, V. Sethumadhavan: Mater. Sci. Eng. A 398 (2005) 367.10.1016/j.msea.2005.03.074Search in Google Scholar
[78] X. Li, Z. Yin: Materials Letters 24 (1995) 239.10.1016/0167-577X(95)00109-3Search in Google Scholar
[79] L.T. Shiang, C.M. Wayman: Metallography 22 (1989) 15.10.1016/0026-0800(89)90019-0Search in Google Scholar
[80] D.T. Peters: Trans ASM 61 (1968) 62.10.2307/4346677Search in Google Scholar
[81] P.P. Sinha, D. Sivakumar, N.S. Babu, K.T. Tharian, A. Natarajan: Steel Research 11 (1995) 490.10.1002/srin.199501160Search in Google Scholar
[82] S.D. Antolovich, A. Saxena, G.R. Chanani: Metall. Trans. 5 (1974) 623.10.1007/BF02644658Search in Google Scholar
© 2006 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Editorial
- Diffusion of 65Zn in the Mg17Al12 intermetallic compound and in the Mg-33.4 wt.% Al eutectic
- Thermodynamic modeling of the sodium alanates and the Na–Al–H system
- Thermodynamic assessment of the systems La2O3–Al2O3 and La2O3–Y2O3
- Re-evaluation of phase equilibria in the Al–Mo system
- EBSD and EDX analysis at the cladding–substrate interface of a laser clad railway wheel
- Thermodynamic properties of liquid silver–indium–antimony alloys determined from e.m.f. measurements
- Density and excess volumes of liquid copper, cobalt, iron and their binary and ternary alloys
- Thermodynamic investigation of Co–Cr alloys, III: Thermo-analytical measurements using DSC and DTA techniques
- Effect of a low frequency electromagnetic field on the direct-chill (DC) casting of AZ80 magnesium alloy ingots
- Microstructure of the “white layer” formed on nitrided Fe-7 wt.% Cr alloys
- The effect of ageing on tensile behaviour, mode I and mixed mode I/III fracture toughness of 7010 aluminium alloy
- Plane bending fatigue behavior of interstitial-free steel at room temperature
- Fracture behaviour of ultrafine-grained materials under static and cyclic loading
- Influence of process parameters on particle characteristics using a combined pressure-swirl-gas atomizer
- Processing and mechanical behaviour of a dual scale particle strengthened copper composite
- Electrochemical characterisation of magnesium and wrought magnesium alloys
- Progress in understanding the metallurgy of 18% nickel maraging steels
- Quality Management Basics on a High Level
- Personal
- News
- Frontmatter
- Editorial
- Editorial
- Basic
- Diffusion of 65Zn in the Mg17Al12 intermetallic compound and in the Mg-33.4 wt.% Al eutectic
- Thermodynamic modeling of the sodium alanates and the Na–Al–H system
- Thermodynamic assessment of the systems La2O3–Al2O3 and La2O3–Y2O3
- Re-evaluation of phase equilibria in the Al–Mo system
- EBSD and EDX analysis at the cladding–substrate interface of a laser clad railway wheel
- Thermodynamic properties of liquid silver–indium–antimony alloys determined from e.m.f. measurements
- Density and excess volumes of liquid copper, cobalt, iron and their binary and ternary alloys
- Thermodynamic investigation of Co–Cr alloys, III: Thermo-analytical measurements using DSC and DTA techniques
- Applied
- Effect of a low frequency electromagnetic field on the direct-chill (DC) casting of AZ80 magnesium alloy ingots
- Microstructure of the “white layer” formed on nitrided Fe-7 wt.% Cr alloys
- The effect of ageing on tensile behaviour, mode I and mixed mode I/III fracture toughness of 7010 aluminium alloy
- Plane bending fatigue behavior of interstitial-free steel at room temperature
- Fracture behaviour of ultrafine-grained materials under static and cyclic loading
- Influence of process parameters on particle characteristics using a combined pressure-swirl-gas atomizer
- Processing and mechanical behaviour of a dual scale particle strengthened copper composite
- Electrochemical characterisation of magnesium and wrought magnesium alloys
- History
- Progress in understanding the metallurgy of 18% nickel maraging steels
- Notifications
- Quality Management Basics on a High Level
- Personal
- News
Articles in the same Issue
- Frontmatter
- Editorial
- Diffusion of 65Zn in the Mg17Al12 intermetallic compound and in the Mg-33.4 wt.% Al eutectic
- Thermodynamic modeling of the sodium alanates and the Na–Al–H system
- Thermodynamic assessment of the systems La2O3–Al2O3 and La2O3–Y2O3
- Re-evaluation of phase equilibria in the Al–Mo system
- EBSD and EDX analysis at the cladding–substrate interface of a laser clad railway wheel
- Thermodynamic properties of liquid silver–indium–antimony alloys determined from e.m.f. measurements
- Density and excess volumes of liquid copper, cobalt, iron and their binary and ternary alloys
- Thermodynamic investigation of Co–Cr alloys, III: Thermo-analytical measurements using DSC and DTA techniques
- Effect of a low frequency electromagnetic field on the direct-chill (DC) casting of AZ80 magnesium alloy ingots
- Microstructure of the “white layer” formed on nitrided Fe-7 wt.% Cr alloys
- The effect of ageing on tensile behaviour, mode I and mixed mode I/III fracture toughness of 7010 aluminium alloy
- Plane bending fatigue behavior of interstitial-free steel at room temperature
- Fracture behaviour of ultrafine-grained materials under static and cyclic loading
- Influence of process parameters on particle characteristics using a combined pressure-swirl-gas atomizer
- Processing and mechanical behaviour of a dual scale particle strengthened copper composite
- Electrochemical characterisation of magnesium and wrought magnesium alloys
- Progress in understanding the metallurgy of 18% nickel maraging steels
- Quality Management Basics on a High Level
- Personal
- News
- Frontmatter
- Editorial
- Editorial
- Basic
- Diffusion of 65Zn in the Mg17Al12 intermetallic compound and in the Mg-33.4 wt.% Al eutectic
- Thermodynamic modeling of the sodium alanates and the Na–Al–H system
- Thermodynamic assessment of the systems La2O3–Al2O3 and La2O3–Y2O3
- Re-evaluation of phase equilibria in the Al–Mo system
- EBSD and EDX analysis at the cladding–substrate interface of a laser clad railway wheel
- Thermodynamic properties of liquid silver–indium–antimony alloys determined from e.m.f. measurements
- Density and excess volumes of liquid copper, cobalt, iron and their binary and ternary alloys
- Thermodynamic investigation of Co–Cr alloys, III: Thermo-analytical measurements using DSC and DTA techniques
- Applied
- Effect of a low frequency electromagnetic field on the direct-chill (DC) casting of AZ80 magnesium alloy ingots
- Microstructure of the “white layer” formed on nitrided Fe-7 wt.% Cr alloys
- The effect of ageing on tensile behaviour, mode I and mixed mode I/III fracture toughness of 7010 aluminium alloy
- Plane bending fatigue behavior of interstitial-free steel at room temperature
- Fracture behaviour of ultrafine-grained materials under static and cyclic loading
- Influence of process parameters on particle characteristics using a combined pressure-swirl-gas atomizer
- Processing and mechanical behaviour of a dual scale particle strengthened copper composite
- Electrochemical characterisation of magnesium and wrought magnesium alloys
- History
- Progress in understanding the metallurgy of 18% nickel maraging steels
- Notifications
- Quality Management Basics on a High Level
- Personal
- News