Home Fracture behaviour of ultrafine-grained materials under static and cyclic loading
Article
Licensed
Unlicensed Requires Authentication

Fracture behaviour of ultrafine-grained materials under static and cyclic loading

  • Peter Hübner EMAIL logo , Rene Kiessling , Horst Biermann and Alexei Vinogradov
Published/Copyright: January 21, 2022
Become an author with De Gruyter Brill

Abstract

Fracture-mechanics experiments were carried out on ultrafine-grained (UFG) samples of copper, titanium and an Al alloy to obtain the fracture behaviour under static and cyclic loading. The UFG-materials investigated show crack resistance behaviour under static loading, which was confirmed by ductile fracture surfaces. Under cyclic load the crack growth rate was described well by the ESACRACK model.


Dedicated to Professor Eckard Macherauch on the occasion of the 80th anniversary of his birth

Dr.-Ing. Peter Hübner Institut für Werkstofftechnik Gustav-Zeuner-Straße 5, D-09599 Freiberg, Germany Tel.: +49 3731 393 166 Fax: +49 3731 393 703

  1. You will find the article and additional material by entering the document number MK101422 on our website at www.ijmr.de

References

[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Progr. Mater. Sci. 45 (2000) 103.10.1016/S0079-6425(99)00007-9Search in Google Scholar

[2] T.G. Langdon, M. Furukawa, M. Nemoto, Z. Horita: JOM 52 (2000) 30.10.1007/s11837-000-0128-7Search in Google Scholar

[3] C.C. Koch: Scripta Mater. 49 (2003) 657.10.1016/S1359-6462(03)00394-4Search in Google Scholar

[4] R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, T.C. Lowe: J. Mater. Res. 17 (2002) 5.10.1557/JMR.2002.0002Search in Google Scholar

[5] V.M. Segal, V.I. Reznikov, V.I. Drobyshevskiy, V.I. Kopylov: Russ. Metall. 1 (1981) 99.Search in Google Scholar

[6] V.M. Segal: Mater. Sci. Eng. A 197 (1995) 157.10.1016/0921-5093(95)09705-8Search in Google Scholar

[7] A.Y. Vinogradov, S. Nagasaki, V. Patlan, K. Kitagawa, M. Kawazoe: Nano Structured Materials 11 (1999) 925.10.1016/S0965-9773(99)00392-XSearch in Google Scholar

[8] T. Hanlon, Y.-N. Kwon, S. Suresh: Scripta Mater. 49 (2003) 675.10.1016/S1359-6462(03)00393-2Search in Google Scholar

[9] C.S. Chung, J.K. Kim, H.K. Kim, W.J. Kim: Mater. Sci. Eng. A 337 (2002), p.3910.1016/S0921-5093(02)00010-2Search in Google Scholar

[10] R.A. Mirshams, C.H. Xiao, S.H. Wang, W.M. Yin: Mater. Sci. Eng. A 215 (2001) 21.10.1016/S0921-5093(01)01213-8Search in Google Scholar

[11] S. Firstov, M. Brodnikovsky, M. Danylenko, Y. Podrezov: Adv. Mater. Sci. 4 (2003) 155.Search in Google Scholar

[12] H.K. Kim, M.I. Choi, C.S. Chung, D.H. Shin: Mater. Sci. Eng. A 340 (2003) 243.10.1016/S0921-5093(02)00178-8Search in Google Scholar

[13] A. Vinogradov, A. Washikita, K. Kitagawa, V.I. Kopylov: Mater. Sci. Eng. A 349 (2003) 318.10.1016/S0921-5093(02)00813-4Search in Google Scholar

[14] A. Vinogradov, V. Patlan, S. Hashimoto, K. Kitagawa: Philosophical Magazine A 82 (2002) 317.10.1080/01418610208239601Search in Google Scholar

[15] DIN V ENV 843-2, Hochleistungskeramik Monolithische Keramik 1996.Search in Google Scholar

[16] P. Trubitz, B. Rehmer, G. Pusch: Tagung Werkstoffprüfung 25. –26.11. (2004) 267.Search in Google Scholar

[17] International Organisation for Standardization (ISO) ISO/FDIS 12135, 2002 (E).Search in Google Scholar

[18] ASTM: Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM E64700.Search in Google Scholar

[19] ESACRACK 4.00 Manual.Search in Google Scholar

[20] K.S. Kumar, H. Van Swygenhoven, S. Suresh: S. Acta Mater. 51 (2003) 5743.10.1016/j.actamat.2003.08.032Search in Google Scholar

[21] A.Y. Vinogradov, S. Nagasaki, V. Patlan, K. Kitagawa, M. Kawazoe: Nano Structured Materials 11 (1999) 925.10.1016/S0965-9773(99)00392-XSearch in Google Scholar

[22] A.Y. Vinogradov, K. Kitagawa, V.I. Kopylov: Materials Science Forum 503–504 (2005) 811.Search in Google Scholar

[23] C. Laird: Special Technical Publication 415 Philadelphia: The American Society for Testing and Materials (1967) 131.Search in Google Scholar

Received: 2006-04-27
Accepted: 2006-08-21
Published Online: 2022-01-21

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Diffusion of 65Zn in the Mg17Al12 intermetallic compound and in the Mg-33.4 wt.% Al eutectic
  4. Thermodynamic modeling of the sodium alanates and the Na–Al–H system
  5. Thermodynamic assessment of the systems La2O3–Al2O3 and La2O3–Y2O3
  6. Re-evaluation of phase equilibria in the Al–Mo system
  7. EBSD and EDX analysis at the cladding–substrate interface of a laser clad railway wheel
  8. Thermodynamic properties of liquid silver–indium–antimony alloys determined from e.m.f. measurements
  9. Density and excess volumes of liquid copper, cobalt, iron and their binary and ternary alloys
  10. Thermodynamic investigation of Co–Cr alloys, III: Thermo-analytical measurements using DSC and DTA techniques
  11. Effect of a low frequency electromagnetic field on the direct-chill (DC) casting of AZ80 magnesium alloy ingots
  12. Microstructure of the “white layer” formed on nitrided Fe-7 wt.% Cr alloys
  13. The effect of ageing on tensile behaviour, mode I and mixed mode I/III fracture toughness of 7010 aluminium alloy
  14. Plane bending fatigue behavior of interstitial-free steel at room temperature
  15. Fracture behaviour of ultrafine-grained materials under static and cyclic loading
  16. Influence of process parameters on particle characteristics using a combined pressure-swirl-gas atomizer
  17. Processing and mechanical behaviour of a dual scale particle strengthened copper composite
  18. Electrochemical characterisation of magnesium and wrought magnesium alloys
  19. Progress in understanding the metallurgy of 18% nickel maraging steels
  20. Quality Management Basics on a High Level
  21. Personal
  22. News
  23. Frontmatter
  24. Editorial
  25. Editorial
  26. Basic
  27. Diffusion of 65Zn in the Mg17Al12 intermetallic compound and in the Mg-33.4 wt.% Al eutectic
  28. Thermodynamic modeling of the sodium alanates and the Na–Al–H system
  29. Thermodynamic assessment of the systems La2O3–Al2O3 and La2O3–Y2O3
  30. Re-evaluation of phase equilibria in the Al–Mo system
  31. EBSD and EDX analysis at the cladding–substrate interface of a laser clad railway wheel
  32. Thermodynamic properties of liquid silver–indium–antimony alloys determined from e.m.f. measurements
  33. Density and excess volumes of liquid copper, cobalt, iron and their binary and ternary alloys
  34. Thermodynamic investigation of Co–Cr alloys, III: Thermo-analytical measurements using DSC and DTA techniques
  35. Applied
  36. Effect of a low frequency electromagnetic field on the direct-chill (DC) casting of AZ80 magnesium alloy ingots
  37. Microstructure of the “white layer” formed on nitrided Fe-7 wt.% Cr alloys
  38. The effect of ageing on tensile behaviour, mode I and mixed mode I/III fracture toughness of 7010 aluminium alloy
  39. Plane bending fatigue behavior of interstitial-free steel at room temperature
  40. Fracture behaviour of ultrafine-grained materials under static and cyclic loading
  41. Influence of process parameters on particle characteristics using a combined pressure-swirl-gas atomizer
  42. Processing and mechanical behaviour of a dual scale particle strengthened copper composite
  43. Electrochemical characterisation of magnesium and wrought magnesium alloys
  44. History
  45. Progress in understanding the metallurgy of 18% nickel maraging steels
  46. Notifications
  47. Quality Management Basics on a High Level
  48. Personal
  49. News
Downloaded on 5.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2006-0244/html
Scroll to top button