Abstract
On the basis of in-situ observations of the α/γ phase transformation in an iron-4.2 at.% Cr alloy, it was found that triple junctions with more random boundaries can be preferential sites for nucleation and that a two-stage migration of α/γ interphase boundaries can occur with highly different velocities, i. e. of 0.23 ~ 0.43 μm/sec for the α/γ two phase temperature region and 2.6 ~ 44 μm/sec for the c single phase region. The origin of the observed high migration velocities of α/c interphase boundaries and the generalized K-S orientation relationship between a new phase and the matrix are discussed on the basis of a possible role of {111}γ//{110}α plane matching interphase boundaries in the α/γ phase transformation.
References
[1] F. Haessner (Ed.): Recrystallization of Metallic Materials, Dr. Riederer-Verlag, Stuttgart (1978).Search in Google Scholar
[2] J.W. Christian: The Theory of Transformations in Metals and Alloys, Pergamon Press (1965) Oxford.Search in Google Scholar
[3] H.I. Aaronson (Ed.): Phase Transformations, ASM. (1970) Metals Park, Ohio.Search in Google Scholar
[4] H. Margolin (Ed.): Recrystallization, Grain Growth and Textures, ASM. (1966).Search in Google Scholar
[5] G. Gottstein, D.A. Molodov (Eds.): Recrystallization and Grain Growth, Springer (2001).Search in Google Scholar
[6] R.W.K. Honeycombe: Steels; Microstructure and Properties, Edward Arnold (1981).Search in Google Scholar
[7] R.W.K. Honeycombe: Met. Trans. A 7 (1976) 915.10.1007/BF02644057Search in Google Scholar
[8] A.H. Geissler: Acta Metall. 1 (1953) 260.10.1016/0001-6160(53)90100-XSearch in Google Scholar
[9] J.W. Cahn: Acta Metall. 4 (1956) 449.10.1016/0001-6160(56)90041-4Search in Google Scholar
[10] G.A. Chadwick, D.A. Smith (Eds.): Grain Boundary Structure and Properties, Academic Press (1976).Search in Google Scholar
[11] R.W. Balluffi (Ed.): Grain Boundary Structure and Kinetics, ASM. (1980).10.2172/5985564Search in Google Scholar
[12] G. Gottstein, L.S. Shvindlerman: Grain Boundary Migration in Metals; Thermodynamics, Kinetics, Applications, CRS Press (1999).Search in Google Scholar
[13] R.D. Heidenrech: J. Appl. Phys. 26 (1955) 879.10.1063/1.1722113Search in Google Scholar
[14] R.W. Powell, R.P. Tye, M.J. Woodman: Phil. Mag. 7 (1961) 857.10.1080/14786436108243343Search in Google Scholar
[15] M. Nemoto: Met. Trans. A 8 (1977) 431.10.1007/BF02661753Search in Google Scholar
[16] H. Yin, T. Emi, H. Shibata: Acta Mater. 47 (1999) 1523.10.1016/S1359-6454(99)00022-1Search in Google Scholar
[17] J.M. Howe, W.T. Reynolds, Jr., V.K. Vasudevan: Z. Metallkd. 95 (2004) 275.10.3139/146.017950Search in Google Scholar
[18] G.G.E. Seward, S. Celotto, D.J. Prior, J. Wheeler, R.C. Pond: Acta Mater. 52 (2004) 821.10.1016/j.actamat.2003.10.049Search in Google Scholar
[19] T. Watanabe, K. Obara, S. Tsurekawa: Mater. Sci. Forum 467 – 470 (2004) 819.10.4028/www.scientific.net/MSF.467-470.819Search in Google Scholar
[20] T. Watanabe, H. Fujii, H. Oikawa, K.I. Arai: Acta Metall. 37 (1989) 941.10.1016/0001-6160(89)90021-7Search in Google Scholar
[21] T. Watanabe: Textures and Microstructures 20 (1993) 195.10.1155/TSM.20.195Search in Google Scholar
[22] C.P. Luo, G.C. Weatherly: Acta Metall. 37 (1989) 791.10.1016/0001-6160(89)90006-0Search in Google Scholar
[23] A. Chiba: J. Japan Inst. Metall. 46 (1982) 980.10.2320/jinstmet1952.46.10_980Search in Google Scholar
[24] T. Watanabe: Scripta Metall. 27 (1992) 1497.10.1016/0956-716X(92)90134-ZSearch in Google Scholar
[25] H.I. Aaronson: Met. Mater. Trans. A 33 (2002) 2285.10.1007/s11661-002-0352-6Search in Google Scholar
[26] T.B. Massalski: Met.Mater.Trans. A 33 (2002) 2277.10.1007/s11661-002-0351-7Search in Google Scholar
[27] J.M. Howe, W.T. Reynolds, Jr., V.K. Vasudevan: Z. Metallkd. 95 (2004) 275.10.3139/146.017950Search in Google Scholar
[28] G. Kurdjumow, G.Sachs: Z. Physik 64 (1930) 325; Naturwiss. 18 (1930) 534.10.1007/BF01397346Search in Google Scholar
[29] Z. Nishiyama: Sci.Rep. Tohoku Imperial Univ. 23 (1934) 637.10.1148/23.5.637aSearch in Google Scholar
[30] P.L. Ryder, W. Pitsch, R.F. Mehl: Acta Metall. 15 (1967) 1431.10.1016/0001-6160(67)90174-5Search in Google Scholar
[31] C.P. Luo, G.C. Weatherly: Acta Metall. 37 (1989) 791.10.1016/0001-6160(89)90006-0Search in Google Scholar
[32] D.-W. Suh, J.-H. Kang, K.H. Oh, H.-C. Lee: Scripta Mater. 46 (2002) 375.10.1016/S1359-6462(01)01254-4Search in Google Scholar
[33] T. Watanabe: Phil. Mag. A 47 (1983) 141.10.1080/01418618308243114Search in Google Scholar
[34] T. Watanabe: Proc.7th Intern. Conf. on Texture of Materials (ICOTOM-7), Netherlands Mater. Sci. Soc., Noordwijkerhout (1984) 307.Search in Google Scholar
[35] P.H. Pumphrey: Scripta Metall. 6 (1972) 107.10.1016/0036-9748(72)90260-8Search in Google Scholar
[36] Y.B. Park, D.N. Lee, G. Gottstein: Acta Mater. 46 (1998) 3371.10.1016/S1359-6454(98)00052-4Search in Google Scholar
[37] R. Sinclair, H.A. Mohamed: Acta Met. 26 (1978) 623.10.1016/0001-6160(78)90114-1Search in Google Scholar
[38] R. Gronsky, G. Thomas: Scripta Metall. 11 (1977) 791.10.1016/0036-9748(77)90077-1Search in Google Scholar
[39] A.J. Pedraza, D. Fainstein-Pedraza: Acta Metall. 25 (1977) 87.10.1016/0001-6160(77)90250-4Search in Google Scholar
[40] K. Kawahara, K. Ibaraki, S. Tsurekawa, T. Watanabe: Mater. Sci. Forum 475 – 479 (2005) 3871.10.4028/www.scientific.net/MSF.475-479.3871Search in Google Scholar
[41] B. Ralph, P.R. Howell, T.F. Page: Phys. Stat. Sol. (b) 55 (1973) 641.10.1002/pssb.2220550220Search in Google Scholar
[42] R. Schindler, J.E. Clemans, R.W. Balluffi: Phys. Stat. Sol., 56 (1979) 749.10.1002/pssa.2210560243Search in Google Scholar
© 2005 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Thermodynamics of grain boundary adsorption in binary systems with limited solubility
- Microstructural characteristics of 3-d networks
- On the three-dimensional twin-limited microstructure
- Grain growth kinetics in 2D polycrystals: impact of triple junctions
- Thermal stability of polycrystalline nanowires
- Conservative motion of parent-martensite interfaces
- Enthalpy – entropy compensation effect in grain boundary phenomena
- Thermodynamic stabilization of nanocrystallinity
- On the relation between the anisotropies of grain boundary segregation and grain boundary energy
- Influence of faceting-roughening on triple-junction migration in zinc
- The influence of triple junction kinetics on the evolution of polycrystalline materials during normal grain growth: New evidence from in-situ experiments using columnar Al foil
- Grain boundary dynamics and selective grain growth in non-ferromagnetic metals in high magnetic fields
- Grain boundary mobility under a stored-energy driving force: a comparison to curvature-driven boundary migration
- Diffusional behavior of nanoscale lead inclusions in crystalline aluminum
- Quantitative experiments on the transition between linear to non-linear segregation of Ag in Cu bicrystals studied by radiotracer grain boundary diffusion
- Room-temperature grain boundary diffusion data measured from historical artifacts
- Solid state infiltration of porous steel with aluminium by the forcefill process
- A mechanism of plane matching boundary-assisted α/γ phase transformation in Fe–Cr alloy based on in-situ observations
- Fast penetration of Ga in Al: liquid metal embrittlement near the threshold of grain boundary wetting
- High-pressure effect on grain boundary wetting in aluminium bicrystals
- Grain boundary segregation and fracture
- Notifications/Mitteilungen
- Personal/Personelles
- Press/Presse
- Conferences/Konferenzen
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Thermodynamics of grain boundary adsorption in binary systems with limited solubility
- Microstructural characteristics of 3-d networks
- On the three-dimensional twin-limited microstructure
- Grain growth kinetics in 2D polycrystals: impact of triple junctions
- Thermal stability of polycrystalline nanowires
- Conservative motion of parent-martensite interfaces
- Enthalpy – entropy compensation effect in grain boundary phenomena
- Thermodynamic stabilization of nanocrystallinity
- On the relation between the anisotropies of grain boundary segregation and grain boundary energy
- Influence of faceting-roughening on triple-junction migration in zinc
- The influence of triple junction kinetics on the evolution of polycrystalline materials during normal grain growth: New evidence from in-situ experiments using columnar Al foil
- Grain boundary dynamics and selective grain growth in non-ferromagnetic metals in high magnetic fields
- Grain boundary mobility under a stored-energy driving force: a comparison to curvature-driven boundary migration
- Diffusional behavior of nanoscale lead inclusions in crystalline aluminum
- Quantitative experiments on the transition between linear to non-linear segregation of Ag in Cu bicrystals studied by radiotracer grain boundary diffusion
- Room-temperature grain boundary diffusion data measured from historical artifacts
- Solid state infiltration of porous steel with aluminium by the forcefill process
- A mechanism of plane matching boundary-assisted α/γ phase transformation in Fe–Cr alloy based on in-situ observations
- Fast penetration of Ga in Al: liquid metal embrittlement near the threshold of grain boundary wetting
- High-pressure effect on grain boundary wetting in aluminium bicrystals
- Grain boundary segregation and fracture
- Notifications/Mitteilungen
- Personal/Personelles
- Press/Presse
- Conferences/Konferenzen