Home A mechanism of plane matching boundary-assisted α/γ phase transformation in Fe–Cr alloy based on in-situ observations
Article
Licensed
Unlicensed Requires Authentication

A mechanism of plane matching boundary-assisted α/γ phase transformation in Fe–Cr alloy based on in-situ observations

  • Tadao Watanabe EMAIL logo , Kouichi Obara , Sadahiro Tsurekawa and Günter Gottstein
Published/Copyright: February 3, 2022
Become an author with De Gruyter Brill

Abstract

On the basis of in-situ observations of the α/γ phase transformation in an iron-4.2 at.% Cr alloy, it was found that triple junctions with more random boundaries can be preferential sites for nucleation and that a two-stage migration of α/γ interphase boundaries can occur with highly different velocities, i. e. of 0.23 ~ 0.43 μm/sec for the α/γ two phase temperature region and 2.6 ~ 44 μm/sec for the c single phase region. The origin of the observed high migration velocities of α/c interphase boundaries and the generalized K-S orientation relationship between a new phase and the matrix are discussed on the basis of a possible role of {111}γ//{110}α plane matching interphase boundaries in the α/γ phase transformation.


Prof. Dr. T. Watanabe Tohoku University, Dept. of Nanomechanics 4-2918 Yurigaoka, Natori Miyagi, Japan Tel.: +81 22 386 3944 Fax: +81 22 386 3944

Dedicated to Professor Dr. Lasar Shvindlerman on the occasion of his 70th birthday


References

[1] F. Haessner (Ed.): Recrystallization of Metallic Materials, Dr. Riederer-Verlag, Stuttgart (1978).Search in Google Scholar

[2] J.W. Christian: The Theory of Transformations in Metals and Alloys, Pergamon Press (1965) Oxford.Search in Google Scholar

[3] H.I. Aaronson (Ed.): Phase Transformations, ASM. (1970) Metals Park, Ohio.Search in Google Scholar

[4] H. Margolin (Ed.): Recrystallization, Grain Growth and Textures, ASM. (1966).Search in Google Scholar

[5] G. Gottstein, D.A. Molodov (Eds.): Recrystallization and Grain Growth, Springer (2001).Search in Google Scholar

[6] R.W.K. Honeycombe: Steels; Microstructure and Properties, Edward Arnold (1981).Search in Google Scholar

[7] R.W.K. Honeycombe: Met. Trans. A 7 (1976) 915.10.1007/BF02644057Search in Google Scholar

[8] A.H. Geissler: Acta Metall. 1 (1953) 260.10.1016/0001-6160(53)90100-XSearch in Google Scholar

[9] J.W. Cahn: Acta Metall. 4 (1956) 449.10.1016/0001-6160(56)90041-4Search in Google Scholar

[10] G.A. Chadwick, D.A. Smith (Eds.): Grain Boundary Structure and Properties, Academic Press (1976).Search in Google Scholar

[11] R.W. Balluffi (Ed.): Grain Boundary Structure and Kinetics, ASM. (1980).10.2172/5985564Search in Google Scholar

[12] G. Gottstein, L.S. Shvindlerman: Grain Boundary Migration in Metals; Thermodynamics, Kinetics, Applications, CRS Press (1999).Search in Google Scholar

[13] R.D. Heidenrech: J. Appl. Phys. 26 (1955) 879.10.1063/1.1722113Search in Google Scholar

[14] R.W. Powell, R.P. Tye, M.J. Woodman: Phil. Mag. 7 (1961) 857.10.1080/14786436108243343Search in Google Scholar

[15] M. Nemoto: Met. Trans. A 8 (1977) 431.10.1007/BF02661753Search in Google Scholar

[16] H. Yin, T. Emi, H. Shibata: Acta Mater. 47 (1999) 1523.10.1016/S1359-6454(99)00022-1Search in Google Scholar

[17] J.M. Howe, W.T. Reynolds, Jr., V.K. Vasudevan: Z. Metallkd. 95 (2004) 275.10.3139/146.017950Search in Google Scholar

[18] G.G.E. Seward, S. Celotto, D.J. Prior, J. Wheeler, R.C. Pond: Acta Mater. 52 (2004) 821.10.1016/j.actamat.2003.10.049Search in Google Scholar

[19] T. Watanabe, K. Obara, S. Tsurekawa: Mater. Sci. Forum 467 – 470 (2004) 819.10.4028/www.scientific.net/MSF.467-470.819Search in Google Scholar

[20] T. Watanabe, H. Fujii, H. Oikawa, K.I. Arai: Acta Metall. 37 (1989) 941.10.1016/0001-6160(89)90021-7Search in Google Scholar

[21] T. Watanabe: Textures and Microstructures 20 (1993) 195.10.1155/TSM.20.195Search in Google Scholar

[22] C.P. Luo, G.C. Weatherly: Acta Metall. 37 (1989) 791.10.1016/0001-6160(89)90006-0Search in Google Scholar

[23] A. Chiba: J. Japan Inst. Metall. 46 (1982) 980.10.2320/jinstmet1952.46.10_980Search in Google Scholar

[24] T. Watanabe: Scripta Metall. 27 (1992) 1497.10.1016/0956-716X(92)90134-ZSearch in Google Scholar

[25] H.I. Aaronson: Met. Mater. Trans. A 33 (2002) 2285.10.1007/s11661-002-0352-6Search in Google Scholar

[26] T.B. Massalski: Met.Mater.Trans. A 33 (2002) 2277.10.1007/s11661-002-0351-7Search in Google Scholar

[27] J.M. Howe, W.T. Reynolds, Jr., V.K. Vasudevan: Z. Metallkd. 95 (2004) 275.10.3139/146.017950Search in Google Scholar

[28] G. Kurdjumow, G.Sachs: Z. Physik 64 (1930) 325; Naturwiss. 18 (1930) 534.10.1007/BF01397346Search in Google Scholar

[29] Z. Nishiyama: Sci.Rep. Tohoku Imperial Univ. 23 (1934) 637.10.1148/23.5.637aSearch in Google Scholar

[30] P.L. Ryder, W. Pitsch, R.F. Mehl: Acta Metall. 15 (1967) 1431.10.1016/0001-6160(67)90174-5Search in Google Scholar

[31] C.P. Luo, G.C. Weatherly: Acta Metall. 37 (1989) 791.10.1016/0001-6160(89)90006-0Search in Google Scholar

[32] D.-W. Suh, J.-H. Kang, K.H. Oh, H.-C. Lee: Scripta Mater. 46 (2002) 375.10.1016/S1359-6462(01)01254-4Search in Google Scholar

[33] T. Watanabe: Phil. Mag. A 47 (1983) 141.10.1080/01418618308243114Search in Google Scholar

[34] T. Watanabe: Proc.7th Intern. Conf. on Texture of Materials (ICOTOM-7), Netherlands Mater. Sci. Soc., Noordwijkerhout (1984) 307.Search in Google Scholar

[35] P.H. Pumphrey: Scripta Metall. 6 (1972) 107.10.1016/0036-9748(72)90260-8Search in Google Scholar

[36] Y.B. Park, D.N. Lee, G. Gottstein: Acta Mater. 46 (1998) 3371.10.1016/S1359-6454(98)00052-4Search in Google Scholar

[37] R. Sinclair, H.A. Mohamed: Acta Met. 26 (1978) 623.10.1016/0001-6160(78)90114-1Search in Google Scholar

[38] R. Gronsky, G. Thomas: Scripta Metall. 11 (1977) 791.10.1016/0036-9748(77)90077-1Search in Google Scholar

[39] A.J. Pedraza, D. Fainstein-Pedraza: Acta Metall. 25 (1977) 87.10.1016/0001-6160(77)90250-4Search in Google Scholar

[40] K. Kawahara, K. Ibaraki, S. Tsurekawa, T. Watanabe: Mater. Sci. Forum 475 – 479 (2005) 3871.10.4028/www.scientific.net/MSF.475-479.3871Search in Google Scholar

[41] B. Ralph, P.R. Howell, T.F. Page: Phys. Stat. Sol. (b) 55 (1973) 641.10.1002/pssb.2220550220Search in Google Scholar

[42] R. Schindler, J.E. Clemans, R.W. Balluffi: Phys. Stat. Sol., 56 (1979) 749.10.1002/pssa.2210560243Search in Google Scholar

Received: 2005-04-28
Accepted: 2005-07-10
Published Online: 2022-02-03

© 2005 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles Basic
  5. Thermodynamics of grain boundary adsorption in binary systems with limited solubility
  6. Microstructural characteristics of 3-d networks
  7. On the three-dimensional twin-limited microstructure
  8. Grain growth kinetics in 2D polycrystals: impact of triple junctions
  9. Thermal stability of polycrystalline nanowires
  10. Conservative motion of parent-martensite interfaces
  11. Enthalpy – entropy compensation effect in grain boundary phenomena
  12. Thermodynamic stabilization of nanocrystallinity
  13. On the relation between the anisotropies of grain boundary segregation and grain boundary energy
  14. Influence of faceting-roughening on triple-junction migration in zinc
  15. The influence of triple junction kinetics on the evolution of polycrystalline materials during normal grain growth: New evidence from in-situ experiments using columnar Al foil
  16. Grain boundary dynamics and selective grain growth in non-ferromagnetic metals in high magnetic fields
  17. Grain boundary mobility under a stored-energy driving force: a comparison to curvature-driven boundary migration
  18. Diffusional behavior of nanoscale lead inclusions in crystalline aluminum
  19. Quantitative experiments on the transition between linear to non-linear segregation of Ag in Cu bicrystals studied by radiotracer grain boundary diffusion
  20. Room-temperature grain boundary diffusion data measured from historical artifacts
  21. Solid state infiltration of porous steel with aluminium by the forcefill process
  22. A mechanism of plane matching boundary-assisted α/γ phase transformation in Fe–Cr alloy based on in-situ observations
  23. Fast penetration of Ga in Al: liquid metal embrittlement near the threshold of grain boundary wetting
  24. High-pressure effect on grain boundary wetting in aluminium bicrystals
  25. Grain boundary segregation and fracture
  26. Notifications/Mitteilungen
  27. Personal/Personelles
  28. Press/Presse
  29. Conferences/Konferenzen
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2005-0206/pdf
Scroll to top button