Home Quantitative experiments on the transition between linear to non-linear segregation of Ag in Cu bicrystals studied by radiotracer grain boundary diffusion
Article
Licensed
Unlicensed Requires Authentication

Quantitative experiments on the transition between linear to non-linear segregation of Ag in Cu bicrystals studied by radiotracer grain boundary diffusion

  • Sergiy V. Divinski EMAIL logo , Maik Lohmann , Sergej I. Prokofjev and Christian Herzig
Published/Copyright: February 3, 2022
Become an author with De Gruyter Brill

Abstract

Non-linear segregation of Ag in Cu grain boundaries (GB) was quantitatively studied by radiotracer GB diffusion measurements on Cu bicrystals with non-special near Σ5 symmetrical [001] tilt boundaries. Bicrystals were used to guarantee a stable GB during the annealing avoiding in this way disturbing effects like GB motion etc. on the measured diffusion penetration profile. The 110mAg radioisotope with a well-defined specific activity was applied. This allowed to determine quantitatively the amount of Ag solute atoms in a section as a function of the penetration depth. The controlled variation of the total amount of diffusing Ag atoms along the Cu GB resulted in a fundamental change of the GB penetration profile shape from almost linear to strongly curved. The curvature of the penetration profiles was unambiguously shown to be caused by non-linear segregation of Ag in Cu GB. The full Ag segregation isotherm was calculated from the corresponding GB diffusion penetration profile.


Dr. Sergiy Divinski Institut für Materialphysik, Universität Münster Wilhelm-Klemm-Str. 10, D-48149 Münster, Germany Tel.: +49 251 83 39030 Fax: +49 251 83 38346

Dedicated to Professor Dr. Lasar Shvindlerman on the occasion of his 70th birthday


References

[1] P. Lejcek, S. Hofmann, V. Paidar:Acta Mater. 51 (2003) 3951.10.1016/S1359-6454(03)00219-2Search in Google Scholar

[2] M. Gothelid, B. Aufray, H. Giordano, J.M. Gay, G. Le Lay,R. Belkhou, N. Marsot, C. Guillot: Surf. Rev. Lett. 4 (1997) 1203. 10.1142/S0218625X97001541Search in Google Scholar

[3] R. Mast, H. Viefhaus, H.J. Grabke: Steel Res. 70 (1999) 239.10.1002/srin.199905633Search in Google Scholar

[4] P. Lejcek: Surf. Interface Analysis 30 (2000) 321. 10.1002/1096-9918(200008)30:1<321::AID-SIA707>3.0.CO;2-JSearch in Google Scholar

[5] D.E. Newbury, D.B. Williams: Acta Mater. 48 (2000) 323. 10.1016/S1359-6454(99)00302-XSearch in Google Scholar

[6] M. Watanabe, D.B. Williams: Z. Metallkd. 94 (2003) 307. 10.3139/146.030307Search in Google Scholar

[7] G. Duscher, M.F. Chisholm, U. Alber, M. Rühle: Nature Mater. 3 (2004) 621.10.1038/nmat1191Search in Google Scholar

[8] Chr. Herzig, J. Geise, Y. Mishin: Acta Metall. Mater. 41 (1993) 1683. 10.1016/0956-7151(93)90187-WSearch in Google Scholar

[9] J. Sommer, Chr. Herzig: J. Appl. Phys. 72 (1992) 2758. 10.1063/1.352328Search in Google Scholar

[10] S.V. Divinski, F. Hisker, Y.-S. Kang, J.-S. Lee, Chr. Herzig: Interface Sci. 11 (2003) 67. 10.1023/A:1021587007368Search in Google Scholar

[11] Y. Mishin, Chr. Herzig: Mater. Sci. Eng. A 260 (1999) 55. 10.1016/S0921-5093(98)00978-2Search in Google Scholar

[12] Chr. Herzig, S.V. Divinski: Mater. Trans. 44 (2003) 14. 10.2320/matertrans.44.14Search in Google Scholar

[13] G. Martin, B. Perraillon, in: Grain Boundary Structure and Kinetics, R.W. Balluffi (Ed.), Amer. Soc. Metals, Metals Park, OH (1980) 239. Search in Google Scholar

[14] B.S. Bokstein, V.E. Fradkov, D.L. Beke: Phil. Mag. A 65 (1992) 277. 10.1080/01418619208201523Search in Google Scholar

[15] Y. Mishin, Chr. Herzig: J. Appl. Phys. 73 (1993) 8206. 10.1063/1.353437Search in Google Scholar

[16] F. Göthoff, Y. Mishin, Chr. Herzig: Z. Metallkd. 84 (1993) 584. 10.1515/ijmr-1993-840814Search in Google Scholar

[17] M. Köpers, Y. Mishin, Chr. Herzig:Acta Metall. Mater. 42 (1994) 2859. 10.1016/0956-7151(94)90227-5Search in Google Scholar

[18] D. Gupta, D.R. Campbell, P.S. Ho, in: Thin Films: InterdiffusionSearch in Google Scholar

[19] I.A. Szabo, D.L. Beke, F.J. Kedves: Phil. Mag. 62 (1990) 227. 10.1080/01418619008243919Search in Google Scholar

[20] E. Budke, Chr. Herzig, S. Prokofjev, L. Shvindlerman: Defect Diff. Forum 156 (1997) 21. 10.4028/www.scientific.net/DDF.156.21Search in Google Scholar

[21] E. Budke, T. Surholt, S. Prokofjev, L. Shvindlerman, Chr. Herzig: Acta Mater. 47 (1999) 385. 10.1016/S1359-6454(98)00381-4Search in Google Scholar

[22] T. Surholt, Chr. Herzig: Acta Metall. 45 (1997) 3817. 10.1016/S1359-6454(97)00037-2Search in Google Scholar

[23] S.V. Divinski, M. Lohmann, Chr. Herzig: Acta Mater. 49 (2001) 249.10.1016/S1359-6454(00)00304-9Search in Google Scholar

[24] S.V. Divinski, M. Lohmann, Chr. Herzig: Acta mater. 52 (2004) 3973. 10.1016/j.actamat.2004.05.013Search in Google Scholar

[25] L.G. Harrison: Trans. Faraday Soc. 57 (1961) 597. 10.1039/tf9615701191Search in Google Scholar

[26] T. Suzuoka: J. Phys. Soc. Japan 19 (1964) 839. 10.1143/JPSJ.19.839Search in Google Scholar

[27] G. Barreau, G. Brunel, G. Cizeron, P. Lacombe:C.R. Acad. Sci. (Paris) C 270 (1970) 516. Search in Google Scholar

[28] S. Hofmann, P. Lejcek, J. Adamek: Surf. Interface Analysis 19 (1992) 601. 10.1002/sia.7401901112Search in Google Scholar

[29] J.C. Fisher:J. Appl. Phys. 22 (1951) 74. 10.1063/1.1699825Search in Google Scholar

[30] D. McLean: Grain Boundaries in Metals, Clarendon Press, Oxford (1957). Search in Google Scholar

[31] M.P. Seah, E.D. Hondros: Proc. Roy. Soc. London A 335 (1973) 191. 10.1098/rspa.1973.0121Search in Google Scholar

[32] R.H. Fowler, E.A. Guggenheim: Statistical Thermodynamics,Cambridge University Press (1939). Search in Google Scholar

[33] S.V. Divinski, M. Lohmann, T. Surholt, Chr. Herzig: Interface Sci. 9 (2001) 357.10.1023/A:1015187501784Search in Google Scholar

[34] E. Rabkin, C. Minkwitz, Chr. Herzig, L. Klinger: Phil. Mag. Lett. 79 (1999) 409. 10.1080/095008399177020Search in Google Scholar

[35] T. Surholt, Y. Mishin, Chr. Herzig:Phys. Rev. B 50 (1994) 3577. 10.1103/PhysRevB.50.3577Search in Google Scholar PubMed

[36] B. Bokstein, A. Ostrovsky, J. Bernardini:Mater. Sci. Forum 294 (1999) 581. 10.4028/www.scientific.net/MSF.294-296.581Search in Google Scholar

[37] G.B. Gibbs: Phys. Stat. Solidi 16 (1966) K27. 10.1002/pssb.19660160143Search in Google Scholar

[38] S.V. Divinski, M. Lohmann, Chr. Herzig: Interface Sci. 11 (2003) 21. 10.1023/A:1021522620571Search in Google Scholar

[39] F. Berthier, B. Legrand, G. Treglia: Acta Mater. 47 (1999) 2705.10.1016/S1359-6454(99)00144-5Search in Google Scholar

Received: 2005-03-14
Accepted: 2005-08-01
Published Online: 2022-02-03

© 2005 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles Basic
  5. Thermodynamics of grain boundary adsorption in binary systems with limited solubility
  6. Microstructural characteristics of 3-d networks
  7. On the three-dimensional twin-limited microstructure
  8. Grain growth kinetics in 2D polycrystals: impact of triple junctions
  9. Thermal stability of polycrystalline nanowires
  10. Conservative motion of parent-martensite interfaces
  11. Enthalpy – entropy compensation effect in grain boundary phenomena
  12. Thermodynamic stabilization of nanocrystallinity
  13. On the relation between the anisotropies of grain boundary segregation and grain boundary energy
  14. Influence of faceting-roughening on triple-junction migration in zinc
  15. The influence of triple junction kinetics on the evolution of polycrystalline materials during normal grain growth: New evidence from in-situ experiments using columnar Al foil
  16. Grain boundary dynamics and selective grain growth in non-ferromagnetic metals in high magnetic fields
  17. Grain boundary mobility under a stored-energy driving force: a comparison to curvature-driven boundary migration
  18. Diffusional behavior of nanoscale lead inclusions in crystalline aluminum
  19. Quantitative experiments on the transition between linear to non-linear segregation of Ag in Cu bicrystals studied by radiotracer grain boundary diffusion
  20. Room-temperature grain boundary diffusion data measured from historical artifacts
  21. Solid state infiltration of porous steel with aluminium by the forcefill process
  22. A mechanism of plane matching boundary-assisted α/γ phase transformation in Fe–Cr alloy based on in-situ observations
  23. Fast penetration of Ga in Al: liquid metal embrittlement near the threshold of grain boundary wetting
  24. High-pressure effect on grain boundary wetting in aluminium bicrystals
  25. Grain boundary segregation and fracture
  26. Notifications/Mitteilungen
  27. Personal/Personelles
  28. Press/Presse
  29. Conferences/Konferenzen
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2005-0203/pdf
Scroll to top button