Quantitative experiments on the transition between linear to non-linear segregation of Ag in Cu bicrystals studied by radiotracer grain boundary diffusion
Abstract
Non-linear segregation of Ag in Cu grain boundaries (GB) was quantitatively studied by radiotracer GB diffusion measurements on Cu bicrystals with non-special near Σ5 symmetrical [001] tilt boundaries. Bicrystals were used to guarantee a stable GB during the annealing avoiding in this way disturbing effects like GB motion etc. on the measured diffusion penetration profile. The 110mAg radioisotope with a well-defined specific activity was applied. This allowed to determine quantitatively the amount of Ag solute atoms in a section as a function of the penetration depth. The controlled variation of the total amount of diffusing Ag atoms along the Cu GB resulted in a fundamental change of the GB penetration profile shape from almost linear to strongly curved. The curvature of the penetration profiles was unambiguously shown to be caused by non-linear segregation of Ag in Cu GB. The full Ag segregation isotherm was calculated from the corresponding GB diffusion penetration profile.
References
[1] P. Lejcek, S. Hofmann, V. Paidar:Acta Mater. 51 (2003) 3951.10.1016/S1359-6454(03)00219-2Search in Google Scholar
[2] M. Gothelid, B. Aufray, H. Giordano, J.M. Gay, G. Le Lay,R. Belkhou, N. Marsot, C. Guillot: Surf. Rev. Lett. 4 (1997) 1203. 10.1142/S0218625X97001541Search in Google Scholar
[3] R. Mast, H. Viefhaus, H.J. Grabke: Steel Res. 70 (1999) 239.10.1002/srin.199905633Search in Google Scholar
[4] P. Lejcek: Surf. Interface Analysis 30 (2000) 321. 10.1002/1096-9918(200008)30:1<321::AID-SIA707>3.0.CO;2-JSearch in Google Scholar
[5] D.E. Newbury, D.B. Williams: Acta Mater. 48 (2000) 323. 10.1016/S1359-6454(99)00302-XSearch in Google Scholar
[6] M. Watanabe, D.B. Williams: Z. Metallkd. 94 (2003) 307. 10.3139/146.030307Search in Google Scholar
[7] G. Duscher, M.F. Chisholm, U. Alber, M. Rühle: Nature Mater. 3 (2004) 621.10.1038/nmat1191Search in Google Scholar
[8] Chr. Herzig, J. Geise, Y. Mishin: Acta Metall. Mater. 41 (1993) 1683. 10.1016/0956-7151(93)90187-WSearch in Google Scholar
[9] J. Sommer, Chr. Herzig: J. Appl. Phys. 72 (1992) 2758. 10.1063/1.352328Search in Google Scholar
[10] S.V. Divinski, F. Hisker, Y.-S. Kang, J.-S. Lee, Chr. Herzig: Interface Sci. 11 (2003) 67. 10.1023/A:1021587007368Search in Google Scholar
[11] Y. Mishin, Chr. Herzig: Mater. Sci. Eng. A 260 (1999) 55. 10.1016/S0921-5093(98)00978-2Search in Google Scholar
[12] Chr. Herzig, S.V. Divinski: Mater. Trans. 44 (2003) 14. 10.2320/matertrans.44.14Search in Google Scholar
[13] G. Martin, B. Perraillon, in: Grain Boundary Structure and Kinetics, R.W. Balluffi (Ed.), Amer. Soc. Metals, Metals Park, OH (1980) 239. Search in Google Scholar
[14] B.S. Bokstein, V.E. Fradkov, D.L. Beke: Phil. Mag. A 65 (1992) 277. 10.1080/01418619208201523Search in Google Scholar
[15] Y. Mishin, Chr. Herzig: J. Appl. Phys. 73 (1993) 8206. 10.1063/1.353437Search in Google Scholar
[16] F. Göthoff, Y. Mishin, Chr. Herzig: Z. Metallkd. 84 (1993) 584. 10.1515/ijmr-1993-840814Search in Google Scholar
[17] M. Köpers, Y. Mishin, Chr. Herzig:Acta Metall. Mater. 42 (1994) 2859. 10.1016/0956-7151(94)90227-5Search in Google Scholar
[18] D. Gupta, D.R. Campbell, P.S. Ho, in: Thin Films: InterdiffusionSearch in Google Scholar
[19] I.A. Szabo, D.L. Beke, F.J. Kedves: Phil. Mag. 62 (1990) 227. 10.1080/01418619008243919Search in Google Scholar
[20] E. Budke, Chr. Herzig, S. Prokofjev, L. Shvindlerman: Defect Diff. Forum 156 (1997) 21. 10.4028/www.scientific.net/DDF.156.21Search in Google Scholar
[21] E. Budke, T. Surholt, S. Prokofjev, L. Shvindlerman, Chr. Herzig: Acta Mater. 47 (1999) 385. 10.1016/S1359-6454(98)00381-4Search in Google Scholar
[22] T. Surholt, Chr. Herzig: Acta Metall. 45 (1997) 3817. 10.1016/S1359-6454(97)00037-2Search in Google Scholar
[23] S.V. Divinski, M. Lohmann, Chr. Herzig: Acta Mater. 49 (2001) 249.10.1016/S1359-6454(00)00304-9Search in Google Scholar
[24] S.V. Divinski, M. Lohmann, Chr. Herzig: Acta mater. 52 (2004) 3973. 10.1016/j.actamat.2004.05.013Search in Google Scholar
[25] L.G. Harrison: Trans. Faraday Soc. 57 (1961) 597. 10.1039/tf9615701191Search in Google Scholar
[26] T. Suzuoka: J. Phys. Soc. Japan 19 (1964) 839. 10.1143/JPSJ.19.839Search in Google Scholar
[27] G. Barreau, G. Brunel, G. Cizeron, P. Lacombe:C.R. Acad. Sci. (Paris) C 270 (1970) 516. Search in Google Scholar
[28] S. Hofmann, P. Lejcek, J. Adamek: Surf. Interface Analysis 19 (1992) 601. 10.1002/sia.7401901112Search in Google Scholar
[29] J.C. Fisher:J. Appl. Phys. 22 (1951) 74. 10.1063/1.1699825Search in Google Scholar
[30] D. McLean: Grain Boundaries in Metals, Clarendon Press, Oxford (1957). Search in Google Scholar
[31] M.P. Seah, E.D. Hondros: Proc. Roy. Soc. London A 335 (1973) 191. 10.1098/rspa.1973.0121Search in Google Scholar
[32] R.H. Fowler, E.A. Guggenheim: Statistical Thermodynamics,Cambridge University Press (1939). Search in Google Scholar
[33] S.V. Divinski, M. Lohmann, T. Surholt, Chr. Herzig: Interface Sci. 9 (2001) 357.10.1023/A:1015187501784Search in Google Scholar
[34] E. Rabkin, C. Minkwitz, Chr. Herzig, L. Klinger: Phil. Mag. Lett. 79 (1999) 409. 10.1080/095008399177020Search in Google Scholar
[35] T. Surholt, Y. Mishin, Chr. Herzig:Phys. Rev. B 50 (1994) 3577. 10.1103/PhysRevB.50.3577Search in Google Scholar PubMed
[36] B. Bokstein, A. Ostrovsky, J. Bernardini:Mater. Sci. Forum 294 (1999) 581. 10.4028/www.scientific.net/MSF.294-296.581Search in Google Scholar
[37] G.B. Gibbs: Phys. Stat. Solidi 16 (1966) K27. 10.1002/pssb.19660160143Search in Google Scholar
[38] S.V. Divinski, M. Lohmann, Chr. Herzig: Interface Sci. 11 (2003) 21. 10.1023/A:1021522620571Search in Google Scholar
[39] F. Berthier, B. Legrand, G. Treglia: Acta Mater. 47 (1999) 2705.10.1016/S1359-6454(99)00144-5Search in Google Scholar
© 2005 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Thermodynamics of grain boundary adsorption in binary systems with limited solubility
- Microstructural characteristics of 3-d networks
- On the three-dimensional twin-limited microstructure
- Grain growth kinetics in 2D polycrystals: impact of triple junctions
- Thermal stability of polycrystalline nanowires
- Conservative motion of parent-martensite interfaces
- Enthalpy – entropy compensation effect in grain boundary phenomena
- Thermodynamic stabilization of nanocrystallinity
- On the relation between the anisotropies of grain boundary segregation and grain boundary energy
- Influence of faceting-roughening on triple-junction migration in zinc
- The influence of triple junction kinetics on the evolution of polycrystalline materials during normal grain growth: New evidence from in-situ experiments using columnar Al foil
- Grain boundary dynamics and selective grain growth in non-ferromagnetic metals in high magnetic fields
- Grain boundary mobility under a stored-energy driving force: a comparison to curvature-driven boundary migration
- Diffusional behavior of nanoscale lead inclusions in crystalline aluminum
- Quantitative experiments on the transition between linear to non-linear segregation of Ag in Cu bicrystals studied by radiotracer grain boundary diffusion
- Room-temperature grain boundary diffusion data measured from historical artifacts
- Solid state infiltration of porous steel with aluminium by the forcefill process
- A mechanism of plane matching boundary-assisted α/γ phase transformation in Fe–Cr alloy based on in-situ observations
- Fast penetration of Ga in Al: liquid metal embrittlement near the threshold of grain boundary wetting
- High-pressure effect on grain boundary wetting in aluminium bicrystals
- Grain boundary segregation and fracture
- Notifications/Mitteilungen
- Personal/Personelles
- Press/Presse
- Conferences/Konferenzen
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Thermodynamics of grain boundary adsorption in binary systems with limited solubility
- Microstructural characteristics of 3-d networks
- On the three-dimensional twin-limited microstructure
- Grain growth kinetics in 2D polycrystals: impact of triple junctions
- Thermal stability of polycrystalline nanowires
- Conservative motion of parent-martensite interfaces
- Enthalpy – entropy compensation effect in grain boundary phenomena
- Thermodynamic stabilization of nanocrystallinity
- On the relation between the anisotropies of grain boundary segregation and grain boundary energy
- Influence of faceting-roughening on triple-junction migration in zinc
- The influence of triple junction kinetics on the evolution of polycrystalline materials during normal grain growth: New evidence from in-situ experiments using columnar Al foil
- Grain boundary dynamics and selective grain growth in non-ferromagnetic metals in high magnetic fields
- Grain boundary mobility under a stored-energy driving force: a comparison to curvature-driven boundary migration
- Diffusional behavior of nanoscale lead inclusions in crystalline aluminum
- Quantitative experiments on the transition between linear to non-linear segregation of Ag in Cu bicrystals studied by radiotracer grain boundary diffusion
- Room-temperature grain boundary diffusion data measured from historical artifacts
- Solid state infiltration of porous steel with aluminium by the forcefill process
- A mechanism of plane matching boundary-assisted α/γ phase transformation in Fe–Cr alloy based on in-situ observations
- Fast penetration of Ga in Al: liquid metal embrittlement near the threshold of grain boundary wetting
- High-pressure effect on grain boundary wetting in aluminium bicrystals
- Grain boundary segregation and fracture
- Notifications/Mitteilungen
- Personal/Personelles
- Press/Presse
- Conferences/Konferenzen