Abstract
Cation diffusion in α-alumina has been the subject of recent investigations, self-diffusion by the radiotracer technique and impurity diffusion by the SIMS technique. A review of the data is carried out to clarify the bulk diffusion mechanisms. Aluminium, cobalt, chromium, and yttrium exhibit a “normal” behaviour, which can be accounted for by an extrinsic vacancy diffusion mechanism. Silver, copper, and platinum behave as “fast diffusers”, although their activation energies are close to those of the other elements. From new experiments on magnesium diffusion reported in this paper, it is suggested that fast diffusion can be traced to self-compensating impurities. A diffusion mechanism which reconciles all the observations is proposed for these elements.
Acknowledgement
The works reported in this paper have been supported by many discussions and collaborations. We would like to thank especially Gabor Erdélyi, Chantal Grattepain, Denise Juvé, Bernard Lesage, Abderrhamane Si Ahmed, and Daniel Treheux for their valuable contributions. This research has benefited from the stimulating atmosphere created by the “Defects and Diffusion” international community. We are happy to take this opportunity to congratulate an eminent member of this community, Professor Helmut Mehrer, University of Münster, Germany, on his birthday.
References
[1] E. Dorre, H. Hubner: Alumina, Processing, Properties and Applications, Springer-Verlag, Berlin (1984).10.1007/978-3-642-82304-6Suche in Google Scholar
[2] A.H. Heuer, K.P.D. Lagerlöf: Phil. Mag. Letters 79 (1999) 619.10.1080/095008399177002Suche in Google Scholar
[3] J.H. Harding, K.J.W. Atkinson, R.W. Grimes: J. Am. Ceram. Soc. 86 (2003) 554.10.1111/j.1151-2916.2003.tb03340.xSuche in Google Scholar
[4] C.J. Dienes, D.O. Welch, C.R. Fisher, R.D. Hatcher, O. Lazareth, M. Samberg: Phys. Rev. B 11 (1975) 3060.10.1103/PhysRevB.11.3060Suche in Google Scholar
[5] R.C. Catlow, R. James, W.C. Mackrodt, R.F. Stewart: Phys. Rev. B 25 (1982) 1006.10.1103/PhysRevB.25.1006Suche in Google Scholar
[6] P.W. Jacobs, E.A. Kotomin: Phil. Mag. A 68 (1993) 695.10.1080/01418619308213992Suche in Google Scholar
[7] R.W. Grimes: J. Am. Ceram. Soc. 77 (1994) 378.10.1111/j.1151-2916.1994.tb07005.xSuche in Google Scholar
[8] K.J.W. Atkinson, R.W. Grimes, M.R. Levy, Z.L. Coull, T. English: J. of the Eur. Cer. Soc. 23 (2003) 3059.10.1016/S0955-2219(03)00101-8Suche in Google Scholar
[9] F.A. Kröger: Adv. in Ceramics 10 (1984) 100.10.1007/BF03273740Suche in Google Scholar
[10] K.P.D. Lagerlöf, R.W. Grimes: Acta Mater. 46 (1998) 5689.10.1016/S1359-6454(98)00256-0Suche in Google Scholar
[11] A.E. Paladino, W.D. Kingery: J. of Chem. Phys. 37 (1962) 957.10.1063/1.1733252Suche in Google Scholar
[12] B. Lesage, A.M. Huntz, G. Petot-Ervas: Rad. Effects 75 (1983) 283.10.1080/00337578308224712Suche in Google Scholar
[13] M. Le Gall, B. Lesage, J. Bernardini: Phil. Mag. A 70 (1994) 761.10.1080/01418619408242929Suche in Google Scholar
[14] E.G. Moya, F. Moya, A. Sami, D. Juvé, D. Treheux, C. Grattepain: Phil. Mag. A 72 (1995) 861.10.1080/01418619508239939Suche in Google Scholar
[15] E.G. Moya, F. Moya, B. Lesage, M.K. Loudjani, C. Grattepain: J. of the Eur. Cer. Soc. 18 (1998) 591.10.1016/S0955-2219(97)00170-2Suche in Google Scholar
[16] E.G. Gontier-Moya, G. Erdélyi, F. Moya, K. Freitag: Phil. Mag. A 80 (2001) 2665.10.1080/01418610108216662Suche in Google Scholar
[17] F. Bondioli, A.M. Ferrari, C. Leonelli, T. Manfredi, L. Linati, P. Mustarelli: J. Am. Ceram. Soc. 83 (2000) 2036.10.1111/j.1151-2916.2000.tb01508.xSuche in Google Scholar
[18] B. Serier, A. Berroug, D. Juve, D. Treheux, E.G. Moya: J. of the Eur. Cer. Soc. 12 (1993) 385.10.1016/0955-2219(93)90008-FSuche in Google Scholar
[19] F. Moya, E.G. Gontier-Moya, D. Juve, D. Treheux, C. Grattepain, M. Aucouturier: Scripta Met. et Mater. 28 (1993) 343.10.1016/0956-716X(93)90439-YSuche in Google Scholar
[20] L. Badrour, E.G. Moya, J. Bernardini, F. Moya: J. of Phys. and Chem. of Solids 50 (1989) 551.10.1016/0022-3697(89)90447-2Suche in Google Scholar
[21] E.G. Gontier-Moya, J. Bernardini, F. Moya: Acta Mater. 49 (2001) 637.10.1016/S1359-6454(00)00357-8Suche in Google Scholar
[22] H. Amenzou, G. Moya, J. Bernardini: Acta Metall. 36 (1988) 767.10.1016/0001-6160(88)90110-1Suche in Google Scholar
[23] A. Almazouzi, J. Bernardini, E.G. Moya, H. Bracht, N.A. Stolwijk, H. Mehrer: J. Appl. Phys. 70 (1991) 1345.10.1063/1.349591Suche in Google Scholar
[24] K. Ando: Advances in Ceramics 23 (1987) 149.10.1016/0065-227X(87)90007-4Suche in Google Scholar
[25] K. Ando: JJAP Series 2, Lattice Defects in Ceramics, 113–123 (1989).Suche in Google Scholar
[26] J. Philibert: Atom movements, Diffusion and mass transport in solids, Editions de Physique, Les Ulis (1991) 25.Suche in Google Scholar
[27] S.J. Bennison, M.P. Harmer: Ceramic Transactions 7 (1990) 13.Suche in Google Scholar
[28] F.C. Frank, D. Turnbull: Phys. Rev. 104 (1956) 617.10.1103/PhysRev.104.617Suche in Google Scholar
[29] U. Gösele, W. Frank, A. Seeger: Appl. Phys. 23 (1980) 361.10.1007/BF00903217Suche in Google Scholar
[30] H. Bracht: MRS Bulletin 25, Vol. 6 (2000) 22.10.1557/mrs2000.94Suche in Google Scholar
© 2004 Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Editorial
- Helmut Mehrer 65 Years
- Articles Basic
- Diffusion in intermetallic compounds: the ordered Cu3Au rule, its history
- Live long and prosper: Long positronium lifetimes in borate glasses
- Atomic defects and diffusion in intermetallic compounds with D03 structure: an ab-initio study
- Relationships between chemical and tracer diffusion coefficients in strongly ionic crystals
- Formation volume of atomic vacancies in body-centred cubic metals
- “Order-order” relaxations in intermetallics
- A new diffusion mechanism for self-compensating impurities in α-alumina
- Self-diffusion behaviour and microstructure of ultrafine-grained Nd2Fe14B with intergranular melting transition
- Tracer diffusion in Pt3Fe ordered alloys
- Intermetallic growth and Kirkendall effect manifestations in Cu/Sn and Au/Sn diffusion couples
- Ionic conductivity of a fragile glass-forming molten salt: Modelling its dependence on frequency, temperature, and pressure
- Some novel applications of sputtering techniques for diffusion studies in solids
- Grain boundary faceting close to the Σ3 coincidence misorientation in copper
- Grain boundary self-diffusion in α-iron of different purity: effect of dislocation enhanced diffusion
- Connection between Fe grain boundary segregation in Al and phase formation in the bulk
- Diffusion in metallic glasses and undercooled metallic melts
- Sculptures depicting the physical processes which govern the plastic deformation of metals and alloys
- Notifications/Mitteilungen
- Personal/Personelles
- Conferences/Konferenzen
Artikel in diesem Heft
- Contents
- Editorial
- Helmut Mehrer 65 Years
- Articles Basic
- Diffusion in intermetallic compounds: the ordered Cu3Au rule, its history
- Live long and prosper: Long positronium lifetimes in borate glasses
- Atomic defects and diffusion in intermetallic compounds with D03 structure: an ab-initio study
- Relationships between chemical and tracer diffusion coefficients in strongly ionic crystals
- Formation volume of atomic vacancies in body-centred cubic metals
- “Order-order” relaxations in intermetallics
- A new diffusion mechanism for self-compensating impurities in α-alumina
- Self-diffusion behaviour and microstructure of ultrafine-grained Nd2Fe14B with intergranular melting transition
- Tracer diffusion in Pt3Fe ordered alloys
- Intermetallic growth and Kirkendall effect manifestations in Cu/Sn and Au/Sn diffusion couples
- Ionic conductivity of a fragile glass-forming molten salt: Modelling its dependence on frequency, temperature, and pressure
- Some novel applications of sputtering techniques for diffusion studies in solids
- Grain boundary faceting close to the Σ3 coincidence misorientation in copper
- Grain boundary self-diffusion in α-iron of different purity: effect of dislocation enhanced diffusion
- Connection between Fe grain boundary segregation in Al and phase formation in the bulk
- Diffusion in metallic glasses and undercooled metallic melts
- Sculptures depicting the physical processes which govern the plastic deformation of metals and alloys
- Notifications/Mitteilungen
- Personal/Personelles
- Conferences/Konferenzen