Abstract
The detailed analysis of X-ray diffraction data obtained from intercritically annealed and isothermally transformed low-alloy FeCMnSi TRIP-aided steels reveals that the microstructure contains athermal plate martensite and Fe2C η carbide in addition to ferrite, bainite and residual austenite. Neutron diffraction shows that athermal plate martensite can be formed at room temperature in the isolated austenite phase. Whereas the formation of athermal martensite leads to compressive strains in the austenite, the formation of strain-induced martensite results in tensile straining of the austenite. The strain-induced transformation leads to the formation of a martensite of low tetragonality. Low-temperature annealing leads to the formation of η carbide in both the athermal and strain-induced martensite.
The authors would like to thank dr. ir. M. De Meyer for the materials preparation.
References
1 De Meyer, M.; Vanderschueren, D.; De Blauwe, K.; De Cooman, B.C.: 41st MWSP Conference Proceedings, ISS 37 (1999) 483.Search in Google Scholar
2 Miller, R.L.: Trans. 57 (1964) 892.10.2307/320154Search in Google Scholar
3 Averbach, B.L.; Cohen, M.: Trans. AIME 176 (1948) 40l.Search in Google Scholar
4 Onink, M.; Brakman, C.M.; Tichelaar, F.D.; Mittemeijer, E.J.; van der Zwaag, S.; Root, J.H.; Konyer, N.B.: Scripta Metall. Mater. 29 (1993) l0ll.10.1016/0956-716X(93)90169-SSearch in Google Scholar
5 Gorton, A.T.; Bitsianes, G.; Joseph, T.L.: Trans. AIME 233 (1965) 1519.Search in Google Scholar
6 Kohlhaas, R.; Dünner, Ph.; Schmitz-Pranghe, N.: Z. Angew. Phys. 23 (1967) 245.10.1515/zna-1968-1038Search in Google Scholar
7 Goldschmidt, H.J.: Advanced X-ray Analysis, Vol. 5, Plenum Press, New York (1962) l9l.10.1007/978-1-4684-7606-4_19Search in Google Scholar
8 Basinski, Z.S.; Hume-Rothery, W.; Sutton, F.R.S.; Sutton, A.L.: Proc. Roy. Soc., London A 229 (1955) 459.10.1098/rspa.1955.0102Search in Google Scholar
9 Nagakura, S.; Hirotsu, Y.; Kusunoki, M.; Suzuki, T.; Nakamura, Y.: Metall. Trans. A 14 (1983) 1025.10.1007/BF02659851Search in Google Scholar
10 Mittemeijer, E.J.; Cheng, L.; van der Schaaf, P.J.; Brakman, C.M.; Korevaar, B.M.: Metall. Trans. A 19 (1988) 926.10.1007/BF02628377Search in Google Scholar
11 Uwakweh, O.N.C.; Bauer, J.Ph.; Génin, J.-M.R.: Metall. Trans. A 2l (1990) 589.10.1007/BF02671931Search in Google Scholar
12 Hirotsu, Y.; Nagakura, S.: Acta Metall. 20 (1972) 645.10.1016/0001-6160(72)90020-XSearch in Google Scholar
13 Jack, K.H.: J. Iron Steel Institute (1951) 26.Search in Google Scholar
14 Ma, C.-B.; Ando, T.; Williamson, D.L.; Krauss, G.: Metall. Trans. A 14(1983) 1033.10.1007/BF02659852Search in Google Scholar
15 Sarikaya, M.; Jhingan, A.K.; Thomas, G.: Metall. Trans. A 14 (1983) 1121.10.1007/BF02659860Search in Google Scholar
16 Kaplow, R.; Ron, M.; DeCristofaro, N.: Metall. Trans A 14 (1983) 1135.10.1007/BF02659861Search in Google Scholar
17 Chen, P.C.; Winchell, P.G.: Metall. Trans. A 11 (1980) 1333.10.1007/BF02653487Search in Google Scholar
18 Olson, G.B.; Cohen, M.: Metall. Trans. A 14 (1983) 1057.10.1007/BF02659854Search in Google Scholar
19 Lagneborg, R.: Acta Metall. 12 (1964) 823.10.1016/0001-6160(64)90176-2Search in Google Scholar
20 Manganon, P.L.; Thomas, G.: Metall. Trans. l (1970) 1577.10.1007/BF02642003Search in Google Scholar
21 Fujita, F.E.: Metall. Trans. A 8 (1977) 1727.10.1007/BF02646876Search in Google Scholar
22 Lysak, L.I.; Vovk, Y.N.: Fiz. Metal. Metalloved. 20 (1965) 540.Search in Google Scholar
23 Lysak, L.I.; Nikolin, B.I.: Fiz. Metal. Metalloved. 20 (1965) 547.Search in Google Scholar
24 Lysak, L.I.; Vovk, Y.N.: Fiz. Metal. Metalloved. 19 (1965) 699.Search in Google Scholar
25 Lysak, L.I.; Vovk, Y.N.; Polischuk, Y.M.: Fiz. Metal. Metalloved. 23 (1967) 898.10.1143/JPSJ.23.898Search in Google Scholar
26 Nelson, J.B.; Riley, D.P.: Proc. Phys. Soc., London 57 (1945) 160.10.1088/0959-5309/57/3/302Search in Google Scholar
27 Onink, M.; Tichelaar, F.D.; Brackman, C.M.; Mittemeijer, E.J.; van der Zwaag, S.: Z. Metallkd. 87 (1996) 24.10.1515/ijmr-1996-870104Search in Google Scholar
28 Cullity, B.D.: Elements of X-ray Diffraction, 2nd edition, Addison-Wesley, Reading, Massachusetts (1978) 508.Search in Google Scholar
29 Nishiyama, Z.: Martensite Transformation, Maruzen, Tokyo (1979) 13.Search in Google Scholar
30 Ruhl, R.C.; Cohen, M.: Trans. Met. Soc. AIME 245 (1969) 241.Search in Google Scholar
31 Bhadeshia, H.K.D.H.; Edmonds, D.V.: Metall. Trans. A 10 (1979) 895.10.1007/BF02658309Search in Google Scholar
32 Uwakweh, O.N.C.; Génin, J.-M.R.; Silvain, J.-F.: Metall. Trans. A 22(1991) 797.10.1007/BF02658989Search in Google Scholar
33 Venables, J.A.: Phil. Mag. 7 (1962) 35.10.1080/14786436208201856Search in Google Scholar
34 Olson, G.B.; Cohen, M.: J. Less-Common Metals 28 (1972) 107.10.1016/0022-5088(72)90173-7Search in Google Scholar
35 Bogers, A.J.; Burgers, W.G.: Acta Metall. 12 (1964) 255.10.1016/0001-6160(64)90194-4Search in Google Scholar
36 Olson, G.B.; Cohen, M.: Metall. Trans. A 7 (1976) 1905.10.1007/BF02654988Search in Google Scholar
37 Warren, B.E.: X-ray Diffraction, Dover Publications, New York (1990) 288.Search in Google Scholar
38 Otte, H.M.: Acta Metall. 5 (1957) 614.10.1016/0001-6160(57)90108-6Search in Google Scholar
© 2002 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Articles/Aufsätze
- Niobium bulk and grain boundary diffusion in alpha-iron
- Comparison of fatigue lives between grain boundaries and component single crystals of copper bicrystals
- Interfacial reaction between liquid Sn-20In-2.8Ag solder and Ag substrate
- Modelling the continuous cooling transformation diagram of engineering steels using neural networks
- Modelling the continuous cooling transformation diagram of engineering steels using neural networks
- Characterization of the metastable austenite in low-alloy FeCMnSi TRIP-aided steel by neutron diffraction
- Self-organized criticality – a model for recrystallization?
- Strain softening effects in texture and microstructure of torsioned pre-deformed Al rods
- Microstructural evolution in as-cast hypereutectic Al-Si alloys with different La additions
- Wear behaviour of graphitic aluminium composite sliding under dry conditions
- Temperature dependence of Young’s Modulus of alumina short fiber reinforced Zn–Al MMCs produced by pressure die-casting
- Notifications/Mitteilungen
- Personal/Personelles
- Information
- Conferences/Konferenzen
Articles in the same Issue
- Frontmatter
- Articles/Aufsätze
- Niobium bulk and grain boundary diffusion in alpha-iron
- Comparison of fatigue lives between grain boundaries and component single crystals of copper bicrystals
- Interfacial reaction between liquid Sn-20In-2.8Ag solder and Ag substrate
- Modelling the continuous cooling transformation diagram of engineering steels using neural networks
- Modelling the continuous cooling transformation diagram of engineering steels using neural networks
- Characterization of the metastable austenite in low-alloy FeCMnSi TRIP-aided steel by neutron diffraction
- Self-organized criticality – a model for recrystallization?
- Strain softening effects in texture and microstructure of torsioned pre-deformed Al rods
- Microstructural evolution in as-cast hypereutectic Al-Si alloys with different La additions
- Wear behaviour of graphitic aluminium composite sliding under dry conditions
- Temperature dependence of Young’s Modulus of alumina short fiber reinforced Zn–Al MMCs produced by pressure die-casting
- Notifications/Mitteilungen
- Personal/Personelles
- Information
- Conferences/Konferenzen