Home Interfacial reaction between liquid Sn-20In-2.8Ag solder and Ag substrate
Article
Licensed
Unlicensed Requires Authentication

Interfacial reaction between liquid Sn-20In-2.8Ag solder and Ag substrate

  • M. J. Chiang and T. H. Chuang EMAIL logo
Published/Copyright: February 15, 2022
Become an author with De Gruyter Brill

Abstract

The morphology and growth kinetics of the intermetallic compound formed during the reaction between liquid Sn-20In-2.8Ag solder and Ag substrate are studied in the temperature range 225–325 °C. The results indicate that the intermetallic compound Ag2+x(In, Sn) of scallop shape appears at the interface. The intermetallic thickness versus reaction time shows a parabolic relation, indicating that the growth of this intermetallic is diffusion-controlled. The activation energy calculated from the Arrhenius plot of the intermetallic growth rate is 41.6 kJ/mol. By marking the original interface with a Ta thin film, the dissolution of Ag into solder and the growth mechanism of the intermetallic compound have been clarified.


Prof. T. H. Chuang Department of Materials Science and Engineering National Taiwan University 1 Roosevelt Rd., Sec. 4, Taipei 106, Taiwan Tel.: +886223929635 Fax: +88622363 4562

  1. We are grateful to the National Science Council (NSC), Taiwan, for sponsoring this research under Grant No. NSC-90-2216-E002-032.

References

1 Kang, S.; Sarkhel, A.: J. Electron. Mat. 23 (1994) 701.10.1007/BF02651362Search in Google Scholar

2 Tomlinson, W.J.; Fullylove, A.: J. Mat. Sci. 27 (1992) 5777.10.1007/BF01119737Search in Google Scholar

3 Choi, W.K.; Lee, H.M.: J. Electron. Mat. 29 (2000) 1207.10.1007/s11664-000-0014-7Search in Google Scholar

4 Mei, Z.; Morris, J.W.: J. Electron. Mat. 21 (1992) 401.10.1007/BF02660403Search in Google Scholar

5 Mei, Z.; Morris, J.W.: J. Electron. Mat. 21 (1992) 599.10.1007/BF02655427Search in Google Scholar

6 Jacobson, D.M.; Humpston, D.: Gold Bull. 22 (1989) 910.1007/BF03214704Search in Google Scholar

7 Glazer, J.: Int. Mat. Rev. 40 (1995) 65.10.1179/imr.1995.40.2.65Search in Google Scholar

8 Liu, Y.M.; Chen, Y.L.; Chuang, T.H.: J. Electron. Mat. 29 (2000) 1047.10.1007/s11664-000-0171-8Search in Google Scholar

9 Liu, Y.M.; Chuang, T.H.: J. Electron. Mat. 29 (2000) 1328.10.1007/s11664-000-0133-1Search in Google Scholar

10 Huang, Y.T.; Chuang, T.H.: Z. Metallkd. 12 (2000) 1002.10.1515/ijmr-2000-911207Search in Google Scholar

11 Chuang, T.H.; Huang, Y.T.; Tsao, L.C.: J. Electron. Mat. 30 (2001) 945.10.1007/BF02657715Search in Google Scholar

12 Su, T.L.; Tsao, L.C.; Chang, S.Y; Chuang, T.H.: J. Mat. Eng. Perform, in press.Search in Google Scholar

13 Liu, P.L.; Shang, J.K.: J. Electron. Mat. 29 (2000) 622.10.1007/s11664-000-0056-xSearch in Google Scholar

14 Anthony, T.R.; Turnbull, D.: Phys. Rev. 151 (1966) 495.10.1103/PhysRev.151.495Search in Google Scholar

15 Dyson, B.F.: J. Appl. Phys. 37 (1966) 2375.10.1063/1.1708821Search in Google Scholar

Received: 2002-06-04
Published Online: 2022-02-15

© 2002 Carl Hanser Verlag, München

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2002-0207/pdf
Scroll to top button