Startseite Study of the textural properties of non-ionic resins and their influence on polyphenol adsorption and desorption
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Study of the textural properties of non-ionic resins and their influence on polyphenol adsorption and desorption

  • Nils L. Huamán-Castilla ORCID logo EMAIL logo , Olivia M. Luque-Vilca ORCID logo , Gregorio Arroyo-Japura ORCID logo , Marcos L. Quispe-Pérez ORCID logo , Nilton C. León-Calvo ORCID logo , José R. Pérez-Correa , Néstor Escalona und María Salomé Mariotti-Celis
Veröffentlicht/Copyright: 8. November 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Macroporous resins are employed for the purification of polyphenolic extracts. However, the relationship between the adsorption and desorption and the textural properties remains unexplored. Thus, we evaluated the textural properties of HP-20, XAD-16 and SP-825 resins and their impact on adsorption and desorption of specific polyphenols like gallic acid, epigallocatechin, and procyanidin B2. The HP-20 resin exhibited a type II isotherm with macroporous structure, while XAD-16 and SP-825 resins displayed type IV isotherms, typically associated with mesoporous materials. The HP-20 resin demonstrated superior adsorption capacity and rupture points for epigallocatechin (2.37 mg/g, 124 min) and procyanidin B2 (1.29 mg/g, 136 min) compared to SP-825 and XAD-16. Contrary, the SP-825 resin exhibited the highest adsorption capacity (5.34 mg/g) and rupture point (68 min) for gallic acid. However, the desorption was more efficient when HP-20 resin was used for all specific polyphenols. Therefore, for an efficient purification process is necessary to consider the chemical structure of the polyphenol and the textural properties.


Corresponding author: Nils L. Huamán-Castilla, Escuela de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua 18001, Perú; and Laboratorio de Tecnologías Sustentables para la extracción de Compuestos de Alto Valor, Instituto de Investigación para el Desarrollo del Perú (IINDEP), Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua 18001, Perú, E-mail:

Correction note: Correction added after online publication November 08, 2023: Mistakenly this article was already published ahead of print without the following three author names “José R. Pérez-Correa, Néstor Escalona and María Salomé Mariotti-Celis”.


Acknowledgments

To Professor Nestor Escalona (PhD) for his support in the analysis of the textural properties.

  1. Research ethics: Not applicable.

  2. Author contributions: Nils L. Huamán-Castilla: project administration, investigation, methodology, analysis and writing – review final; José R. Perez Correa and María S. Mariotti Celis: methodology, supervision during the data acquisition process and original draft preparation; Nestor Escalona: analysis of textural properties of the resins investigated; Olivia M. Luque-Vilca: validation and formal analysis, as well as writing – original draft preparation; Gregorio Arroyo-Japura: writing – original draft preparation and editing; Marcos L. Quispe-Pérez: formal analysis, and writing – original draft preparation; Nilton C. León-Calvo: statistic analysis and writing – original draft preparation.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Stromsnes, K, Lagzdina, R, Olaso‐Gonzalez, G, Gimeno‐Mallench, L, Gambini, J. Pharmacological properties of polyphenols: bioavailability, mechanisms of action and biological effects in in vitro studies, animal models and humans. Biomedicines 2021;9:1–26. https://doi.org/10.3390/biomedicines9081074.Suche in Google Scholar PubMed PubMed Central

2. Panzella, L, Napolitano, A. Natural phenol polymers: recent advances in food and health applications. Antioxidants 2017;6:1–24. https://doi.org/10.3390/antiox6020030.Suche in Google Scholar PubMed PubMed Central

3. Li, L, Sun, B. Grape and wine polymeric polyphenols: their importance in enology. Crit Rev Food Sci Nutr 2019;59:563–79. https://doi.org/10.1080/10408398.2017.1381071.Suche in Google Scholar PubMed

4. Singla, RK, Dubey, AK, Garg, A, Sharma, RK, Fiorino, M, Ameen, SM, et al.. Natural polyphenols: chemical classification, definition of classes, subcategories, and structures. J AOAC Int 2019;102:1397–400. https://doi.org/10.5740/jaoacint.19-0133.Suche in Google Scholar PubMed

5. Huaman-Castilla, NL, Mariotti-Celis, MS, Perez-Correa, JR. Polyphenols of carménère grapes. Mini-Reviews Org Chem 2017;14:176–86. https://doi.org/10.2174/1570193x14666170206151439.Suche in Google Scholar

6. Cory, H, Passarelli, S, Szeto, J, Tamez, M, Mattei, J. The role of polyphenols in human health and food systems: a mini-review. Front Nutr 2018;5:1–9. https://doi.org/10.3389/fnut.2018.00087.Suche in Google Scholar PubMed PubMed Central

7. Rathod, NB, Elabed, N, Punia, S, Ozogul, F, Kim, SK, Rocha, JM. Recent developments in polyphenol applications on human health: a review with current knowledge. Plants 2023;12:1217. https://doi.org/10.3390/plants12061217.Suche in Google Scholar PubMed PubMed Central

8. Dzialo, M, Mierziak, J, Korzun, U, Preisner, M, Szopa, J, Kulma, A. The potential of plant phenolics in prevention and therapy of skin disorders. Int J Mol Sci 2016;17:1–41. https://doi.org/10.3390/ijms17020160.Suche in Google Scholar PubMed PubMed Central

9. Nie, F, Liu, L, Cui, J, Zhao, Y, Zhang, D, Zhou, D, et al.. Oligomeric proanthocyanidins: an updated review of their natural sources , synthesis , and potentials. Antioxidants 2023;12:1004. https://doi.org/10.3390/antiox12051004.Suche in Google Scholar PubMed PubMed Central

10. Ameer, K, Shahbaz, HM, Kwon, JH. Green extraction methods for polyphenols from plant matrices and their byproducts: a review. Compr Rev Food Sci Food Saf 2017;16:295–315. https://doi.org/10.1111/1541-4337.12253.Suche in Google Scholar PubMed

11. Huaman-Castilla, NL, Martínez-Cifuentes, M, Camilo, C, Pedreschi, F, Mariotti-Celis, M, Pérez-Correa, JR. The impact of temperature and ethanol concentration on the global recovery of specific polyphenols in an integrated HPLE/RP process on Carménère pomace extracts. Molecules 2019;24:1–16. https://doi.org/10.3390/molecules24173145.Suche in Google Scholar PubMed PubMed Central

12. Erpel, F, Mariotti-Celis, MS, Parada, J, Pedreschi, F, Pérez-Correa, JR. Pressurized hot liquid extraction with 15% v/v glycerol-water as an effective environment-friendly process to obtain durvillaea incurvata and lessonia spicata phlorotannin extracts with antioxidant and antihyperglycemic potential. Antioxidants 2021;10:1–22. https://doi.org/10.3390/antiox10071105.Suche in Google Scholar PubMed PubMed Central

13. Erpel, F, Camilo, C, Mateos, R, Ricardo Pérez-Correa, J. A macroporous resin purification process to obtain food-grade phlorotannin-rich extracts with α-glucosidase inhibitory activity from Chilean brown seaweeds: an UHPLC-MSn profiling. Food Chem 2023;402:134472. https://doi.org/10.1016/j.foodchem.2022.134472.Suche in Google Scholar PubMed

14. Mariotti-Celis, MS, Rivera-Tovar, PR, Huamán-Castilla, NL, Pérez-Correa, JR. Purification and fractionation of crude seaweed extracts by adsorption-desorption processes. In: Perez Correa, RP, Mateos, R, Dominguez, H, editors. Marine phenolic compounds: science and engineering. United States: Elsevier Inc.; 2023.10.1016/B978-0-12-823589-8.00009-1Suche in Google Scholar

15. Wang, Z, Peng, S, Peng, M, She, Z, Yang, Q, Huang, T. Adsorption and desorption characteristics of polyphenols from Eucommia ulmoides Oliv. leaves with macroporous resin and its inhibitory effect on α-amylase and α-glucosidase. Ann Transl Med 2020;8:1004. https://doi.org/10.21037/atm-20-5468.Suche in Google Scholar PubMed PubMed Central

16. Zadeh, NS, Zeppa, G. Recovery and concentration of polyphenols from roasted hazelnut skin extract using macroporous resins. Foods 2022;11:1–12. https://doi.org/10.3390/foods11131969.Suche in Google Scholar PubMed PubMed Central

17. SIGMA ALDRICH. Catalog products (macroporous resins). http://www.sigmaaldrich.com/ [Accessed 10 Apr 2023].Suche in Google Scholar

18. Tapia-Quirós, P, Montenegro-Landívar, MF, Reig, M, Vecino, X, Cortina, JL, Saurina, J, et al.. Recovery of polyphenols from agri-food by-products: the olive oil and winery industries cases. Foods 2022;11:1–26. https://doi.org/10.3390/foods11030362.Suche in Google Scholar PubMed PubMed Central

19. Far, HM, Lawson, S, Al-Naddaf, Q, Rezaei, F, Sotiriou-Leventis, C, Rownaghi, AA. Advanced pore characterization and adsorption of light gases over aerogel-derived activated carbon. Microporous Mesoporous Mater 2021;313:110833. https://doi.org/10.1016/j.micromeso.2020.110833.Suche in Google Scholar

20. Webb, P, Clyde, O. Analytical methods in fine particle technology, 1st ed.. Norcross: Micromeritics Instrument Corporation; 1997:301 p.Suche in Google Scholar

21. Zheng, H, Gao, Y, Zhang, J, Meng, X, Du, Q, Yin, J. Adsorption/desorption on macroporous resins of okicamelliaside in the extract of camellia nitidissima chi leaves. Horticulturae 2023;9:1–12. https://doi.org/10.3390/horticulturae9020166.Suche in Google Scholar

22. Sepúlveda, C, Garcíaa, R, Reyes, P, Ghampson, IT, Fierroc, JLG, Laurenti, D, et al.. Hydrodeoxygenation of guaiacol over ReS 2/ activated carbon catalysts. Support and Re loading effect. Appl Catal Gen 2014;475:427–37. https://doi.org/10.1016/j.apcata.2014.01.057.Suche in Google Scholar

23. Ghampson, IT, Sepúlveda, C, Garcia, R, Radovic, LR, Fierro, JLG, Desisto, WJ, et al.. Hydrodeoxygenation of guaiacol over carbon-supported molybdenum nitride catalysts: effects of nitriding methods and support properties. Appl Catal Gen 2012;439–440:111–24. https://doi.org/10.1016/j.apcata.2012.06.047.Suche in Google Scholar

24. Nasrollahzadeh, M, Atarod, M, Sajjadi, M, Sajadi, SM, Issaabadi, Z. Plant-mediated green synthesis of nanostructures: mechanisms, characterization, and applications. In: Nasrollahzadeh, M, Mohammad, S, Issaabadi, Z, Atarod, M, editors. Interface science and technology. United States: Elsevier Ltd.; 2019.10.1016/B978-0-12-813586-0.00006-7Suche in Google Scholar

25. Holbrook, RD, Galyean, AA, Gorham, JM, Herzing, A, Pettibone, J. Overview of nanomaterial characterization and metrology. In: Baalousha, M, Lead, JR, editors. Frontiers of nanoscience. United States: Elsevier Ltd; 2015.10.1016/B978-0-08-099948-7.00002-6Suche in Google Scholar

26. Sandhu, AK, Gu, L. Adsorption/desorption characteristics and separation of anthocyanins from muscadine (Vitis rotundifolia) juice pomace by use of macroporous adsorbent resins. J Agric Food Chem 2013;61:1441–8. https://doi.org/10.1021/jf3036148.Suche in Google Scholar PubMed

27. Brunauer, S, Emmett, PH, Teller, E. Gases in multimolecular layers. J Am Chem Soc 1938;60:309–19. https://doi.org/10.1021/ja01269a023.Suche in Google Scholar

28. Barrett, EP, Joyner, LG, Halenda, PP. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 1951;73:373–80. https://doi.org/10.1021/ja01145a126.Suche in Google Scholar

29. Arsuaga, JM, Aguado, J, Arencibia, A, López-Gutiérrez, MS. Aqueous mercury adsorption in a fixed bed column of thiol functionalized mesoporous silica. Adsorption 2014;20:311–9. https://doi.org/10.1007/s10450-013-9586-4.Suche in Google Scholar

30. Rahman, MM, Shafiullah, AZ, Pal, A, Islam, MA, Jahan, I, Saha, BB. Study on optimum iupac adsorption isotherm models employing sensitivity of parameters for rigorous adsorption system performance evaluation. Energies 2021;14:1–20. https://doi.org/10.3390/en14227478.Suche in Google Scholar

31. Alothman, ZA. A review: fundamental aspects of silicate mesoporous materials. Materials (Basel) 2012;5:2874–902. https://doi.org/10.3390/ma5122874.Suche in Google Scholar

32. Rouquerol, J, Avnir, D, Fairbridge, CW, Everett, DH, Haynes, JM, Pernicone, N, et al.. Recommendations for the characterization of porous solids (technical report). Pure Appl Chem 1994;66:1739–58. https://doi.org/10.1351/pac199466081739.Suche in Google Scholar

33. Sing, K. The use of nitrogen adsorption for the characterisation of porous materials. Colloids Surfaces A Physicochem Eng Asp 2001;187–188:3–9. https://doi.org/10.1016/s0927-7757(01)00612-4.Suche in Google Scholar

34. Pubchem. Compound summary. Polyphenols chemical structure. https://pubchem.ncbi.nlm.nih.gov/compound/ [Accessed 30 Mar 2023].Suche in Google Scholar

35. Hou, M, Zhang, L. Adsorption/desorption characteristics and chromatographic purification of polyphenols from Vernonia patula (Dryand.) Merr. using macroporous adsorption resin. Ind Crops Prod 2021;170:113729. https://doi.org/10.1016/j.indcrop.2021.113729.Suche in Google Scholar

36. Cantuaria, ML, Nascimento, ES, Neto, AFA, Santos, OAA dos, Vieira, MGA. Removal and recovery of silver by dynamic adsorption on bentonite clay using a fixed-bed column system. Adsorpt Sci Technol 2015;33:91–103. https://doi.org/10.1260/0263-6174.33.2.91.Suche in Google Scholar

Received: 2023-01-30
Accepted: 2023-10-16
Published Online: 2023-11-08

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 12.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijfe-2023-0025/html?lang=de
Button zum nach oben scrollen