Abstract
A method of combining low-pressure superheated steam drying (LPSSD) and vacuum drying (VD) was proposed to improve the dried pineapple quality and increase the drying rate. It was found that the inversion temperature in low-pressure superheated steam drying of pineapple was 85.75 °C in terms of the first falling rate period. The combining drying (LPSSD–VD) reduced the maximum material temperature by 9.5 °C and 0.35 °C, and shortened the drying time by 50 min and 90 min compared with LPSSD and VD at the same drying temperature of 90 °C. The vitamin C retention rate of dried pineapple by LPSSD–VD was 29.33% and 15.94% higher than that of LPSSD and VD, respectively. The color of dried pineapple was also improved. Moreover, the sugar content of dried pineapple can be well controlled to meet the health demand of low sugar and ensure the taste of dried pineapple during LPSSD–VD process.
Funding source: Key-Area Research and Development Program of Guangdong Province
Award Identifier / Grant number: 2018B020241003
Funding source: Scientific Research Projects of Tianjin Education Commission
Award Identifier / Grant number: 2019KJ037
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The authors express their sincere appreciation to the Key-Area Research and Development Program of Guangdong Province (2018B020241003) and Scientific Research Projects of Tianjin Education Commission (2019KJ037) for supporting the study financially.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Sehrawat, R, Nema, PK, Kaur, BP. Effect of superheated steam drying on properties of foodstuffs and kinetic modeling. Innovat Food Sci Emerg Technol 2016;34:285–301. https://doi.org/10.1016/j.ifset.2016.02.003.Suche in Google Scholar
2. Min, Z, Chen, H, Mujumdar, AS, Tang, J, Miao, S, Wang, Y. Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Crit Rev Food Technol 2017;57:1239–55.10.1080/10408398.2014.979280Suche in Google Scholar PubMed
3. Suvarnakuta, P, Devahastin, S, Mujumdar, AS. Drying kinetics and β-carotene degradation in carrot undergoing different drying processes. J Food Sci 2010;70:s520–6.10.1111/j.1365-2621.2005.tb11528.xSuche in Google Scholar
4. Alp, D, Bulantekin, Z. The microbiological quality of various foods dried by applying different drying methods: a review. Eur Food Res Technol 2021;247:1333–43. https://doi.org/10.1007/s00217-021-03731-z.Suche in Google Scholar PubMed PubMed Central
5. Niamnuy, C, Charoenchaitrakool, M, Mayachiew, P, Devahastin, S. Bioactive compounds and bioactivities of Centella asiatica (L.) urban prepared by different drying methods and conditions. Dry Technol 2007;31:2007–15.10.1080/07373937.2013.839563Suche in Google Scholar
6. Malaikritsanachalee, P, Choosri, W, Choosri, T. Study on intermittent low‐pressure superheated steam drying: effect on drying kinetics and quality changes in ripe mangoes. J Food Process Preserv 2020;44:e14669. https://doi.org/10.1111/jfpp.14669.Suche in Google Scholar
7. Rachna, S, Nema, PK. Low pressure superheated steam drying of onion slices: kinetics and quality comparison with vacuum and hot air drying in an advanced drying unit. J Food Sci Technol 2018;55:4311–20.10.1007/s13197-018-3379-4Suche in Google Scholar PubMed PubMed Central
8. Pongmalai, P, Devahastin, S. Profiles of prebiotic fructooligosaccharides, inulin and sugars as well as physicochemical properties of banana and its snacks as affected by ripening stage and applied drying methods. Dry Technol 2020;38:724–34. https://doi.org/10.1080/07373937.2019.1700517.Suche in Google Scholar
9. Pan, YK, Wang, XZ, Liu, XD. Modern drying technology. Beijing: Chem Ind Press; 2007.Suche in Google Scholar
10. Li, Z, Liu, J, Xu, Q, Shi, Y. Study on inversion temperature in low pressure superheated steam drying of green turnip slice. Trans CSAE 2018;34:279–86.Suche in Google Scholar
11. Devahastin, S, Suvarnakuta, P, Soponronnarit, S, Mujumdar, AS. A comparative study of low-pressure superheated steam and vacuum drying of a heat-sensitive material. Dry Technol 2004;22:1845–67. https://doi.org/10.1081/drt-200032818.Suche in Google Scholar
12. Panyawong, S, Devahastin, S. Determination of deformation of a food product undergoing different drying methods and conditions via evolution of a shape factor. J Food Eng 2007;78:151–61. https://doi.org/10.1016/j.jfoodeng.2005.09.012.Suche in Google Scholar
13. Thomkapanich, O, Suvarnakuta, P, Devahastin, S. Study of intermittent low-pressure superheated steam and vacuum drying of a heat-sensitive material. Dry Technol 2007;25:205–23. https://doi.org/10.1080/07373930601161146.Suche in Google Scholar
14. Nimmol, C, Devahastin, S, Swasdisevi, T, Soponronnarit, S. Drying of banana slices using combined low-pressure superheated steam and far-infrared radiation. J Food Eng 2007;81:624–33. https://doi.org/10.1016/j.jfoodeng.2006.12.022.Suche in Google Scholar
15. Liu, J, Xu, Q, Shi, Y, Wang, R, Li, Z. Influence of steam condensation on vitamin C retention in green turnip undergoing low pressure superheated steam drying. J Food Process Eng 2018;41:e12898. https://doi.org/10.1111/jfpe.12898.Suche in Google Scholar
16. Lobo, MG, Paull, RE. Handbook of pineapple technology: production, postharvest science, processing and nutrition. New Jersey, MA: John Wiley & Sons; 2017.10.1002/9781118967355Suche in Google Scholar
17. Zdrojewicz, Z, Chorbinska, J, Biezynski, B, Krajewski, P. Health-promoting properties of pineapple. Pediatria i Med Rodz 2018;14:133–42. https://doi.org/10.15557/pimr.2018.0013.Suche in Google Scholar
18. Suvarnakuta, P, Devahastin, S, Soponronnarit, S, Mujumdar, AS. Drying kinetics and inversion temperature in a low-pressure superheated steam-drying system. Ind Eng Chem Res 2005;44:1934–41. https://doi.org/10.1021/ie049675r.Suche in Google Scholar
19. Liu, J, Xue, J, Xu, Q, Shi, Y, Wu, L, Li, Z. Drying kinetics and quality attributes of white radish in low pressure superheated steam. Int J Food Eng 2017;13:20160365. https://doi.org/10.1515/ijfe-2016-0365.Suche in Google Scholar
20. Haji, M, Chow, L. Experimental measurement of water evaporation rates into air and superheated steam. J Heat Trans 1988;110:237–42. https://doi.org/10.1115/1.3250457.Suche in Google Scholar
21. Rafidah, H, Ando, Y, Amin, I, Shirai, Y, Mohd Ali, H. Enhanced polyphenol content and antioxidant capacity in the edible portion of avocado dried with superheated-steam. Int J Adv Res 2014;8:241–8.Suche in Google Scholar
22. Sehrawat, R, Nema, PK, Kaur, BP. Quality evaluation and drying characteristics of mango cubes dried using low-pressure superheated steam, vacuum and hot air drying methods. LWT Food Sci Technol 2018;92:548–55. https://doi.org/10.1016/j.lwt.2018.03.012.Suche in Google Scholar
23. Guillard, V, Bourlieu, C, Gontard, N. Food structure and moisture transfer: a modeling approach. New York, MA: SSBM Press; 2013.10.1007/978-1-4614-6342-9Suche in Google Scholar
24. Methakhup, S, Chiewchan, N, Devahastin, S. Effects of drying methods and conditions on drying kinetics and quality of Indian gooseberry flake. LWT Food Sci Technol 2005;38:579–87. https://doi.org/10.1016/j.lwt.2004.08.012.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Articles
- Orange juice ultrafiltration: characterisation of deposit layers and membrane surfaces after fouling and cleaning
- Changes in volatile organic compounds and lipid oxidation in traditional Chinese bacon during cold smoking
- Drying of pineapple slices using combined low-pressure superheated steam and vacuum drying
- An energy dispersive X-ray fluorescence spectrometry approach for the identification of geographical origin of wheat flour
- Study on quality change mechanism of green turnip slices during low pressure superheated steam drying based on sensitivity analysis method
- Aqueous enzymatic extraction of peanut oil body and protein and evaluation of its physicochemical and functional properties
- Effect of microwave, infrared, and convection hot-air on drying kinetics and quality properties of okra pods
Artikel in diesem Heft
- Frontmatter
- Articles
- Orange juice ultrafiltration: characterisation of deposit layers and membrane surfaces after fouling and cleaning
- Changes in volatile organic compounds and lipid oxidation in traditional Chinese bacon during cold smoking
- Drying of pineapple slices using combined low-pressure superheated steam and vacuum drying
- An energy dispersive X-ray fluorescence spectrometry approach for the identification of geographical origin of wheat flour
- Study on quality change mechanism of green turnip slices during low pressure superheated steam drying based on sensitivity analysis method
- Aqueous enzymatic extraction of peanut oil body and protein and evaluation of its physicochemical and functional properties
- Effect of microwave, infrared, and convection hot-air on drying kinetics and quality properties of okra pods