Home Numerical Solution of a Nonlinear Diffusion Model for Soybean Hydration with Moving Boundary
Article
Licensed
Unlicensed Requires Authentication

Numerical Solution of a Nonlinear Diffusion Model for Soybean Hydration with Moving Boundary

  • Douglas J. Nicolin ORCID logo EMAIL logo , Gisleine E. C. da Silva , Regina Maria M. Jorge and Luiz Mario M. Jorge
Published/Copyright: August 28, 2015

Abstract

Variable diffusivity and volume of the grains are taken into account in the diffusion model that describes mass transfer in soybean hydration. The variable space grid method (VSGM) was used to consider the increase in grain size, and the diffusivity was considered an exponential function of the moisture content. An equation for the behavior of the grain radius as a function of time was obtained by global mass balance over the soybean grain and the differential equation considered that the increase in radius happens due to the influence of the convective and diffusive fluxes at the surface of the grains. The model was solved by an explicit numerical scheme which presented satisfactory results. The results showed the behavior of moisture profiles obtained as a function of time and radial position and also showed how the grain radius increased with time and changed the solution domain of the diffusion equation.

Funding statement: Funding: This work was financially supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Nomenclature

B

Dimensionless constant

C

Dimensionless constant

D

Diffusivity (m2/s)

D0

Pre-exponential factor (m2/s)

i

Radial coordinate index

j

Time coordinate index

KC

Convective mass transfer coefficient (kg/m2.s)

k1

Exponential factor (kgDS/kgwater)

M

Number of divisions in time coordinate

N

Number of divisions in radial coordinate

r

Radial coordinate (m)

r

Dimensionless radius

R

Radius of soybean grains (m)

R0

Initial radius (m)

R

Dimensionless grain radius

t

Time coordinate (s)

t

Dimensionless time

v

Velocity of the moving boundary (m/s)

X

Moisture content on dry basis (kgwater/kgDS)

Xm

Average moisture content (kgwater/kgDS)

XS

Moisture content at the surface of the grain (kgwater/kgDS)

X0

Initial moisture content (kgwater/kgDS)

Xeq

Equilibrium moisture content (kgwater/kgDS)

X

Dimensionless moisture content

Greek symbols
Δ

Difference operator

λ

Dimensionless exponential factor

ρH2O

Water density (kg/m3)

ρDS

Dry solid density (kg/m3)

Acknowledgment

This work was supported by the Coordination for the Improvement of Higher Education Personnel – CAPES – Brazil.

References

1. Pan Z, Tangratanavalee W. Characteristics of soybeans as affected by soaking conditions. LWT Food Sci Technol 2003;36:143–51. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0023643802002025.10.1016/S0023-6438(02)00202-5Search in Google Scholar

2. Coutinho MR, Omoto ES, Andrade CMG, Jorge L M de M. Modelagem e validação da hidratação de grãos de soja. Ciênc Tecnol Aliment 2005;25:603–10. Available at: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612005000300034&lng=pt&nrm=iso&tlng=pt. Accessed: 2 Dec 2013.10.1590/S0101-20612005000300034Search in Google Scholar

3. Coutinho MR, Conceição WA, Omoto ES, Andrade CM, Jorge LM. Novo modelo de parâmetros concentrados aplicado à hidratação de grãos. Ciênc Tecnol Aliment 2007;27:451–5. Available at: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612007000300005&lng=pt&nrm=iso&tlng=pt. Accessed: 2 Dec 2013.10.1590/S0101-20612007000300005Search in Google Scholar

4. Hsu KH. A diffusion model with a concentration-dependent diffusion coefficient for describing water movement in legumes during soaking. J Food Sci 1983;48:618–22 and 645.10.1111/j.1365-2621.1983.tb10803.xSearch in Google Scholar

5. Nicolin DJ, Coutinho MR, Andrade CM, Jorge LM. Hsu model analysis considering grain volume variation during soybean hydration. J Food Eng 2012;111:496–504. Available at: http://linkinghub.elsevier.com/retrieve/pii/S026087741200115X. Accessed: 26 Nov 2013.10.1016/j.jfoodeng.2012.02.035Search in Google Scholar

6. Nicolin DJ, Coutinho MR, Andrade CM, Jorge LM. Soybean hydration: investigation of distributed parameter models with respect to surface boundary conditions. Chem Eng Commun 2013;200:959–76. Available at: http://www.tandfonline.com/doi/abs/10.1080/00986445.2012.732831. Accessed: 26 Nov 2013.10.1080/00986445.2012.732831Search in Google Scholar

7. Barry SI, Caunce J. Exact and numerical solutions to a Stefan problem with two moving boundaries. Appl Math Model 2008;32:83–98. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0307904X06002939. Accessed: 7 Nov 2013.10.1016/j.apm.2006.11.004Search in Google Scholar

8. Davey MJ, Landman KA, McGuinness MJ, Jin HN. Mathematical modeling of rice cooking and dissolution in beer production. AIChE J 2002;48:1811–26. Available at: http://doi.wiley.com/10.1002/aic.690480821.10.1002/aic.690480821Search in Google Scholar

9. McGuinness MJ, Please CP, Fowkes N, McGowan P, Ryder L, Forte D. Modelling the wetting and cooking of a single cereal grain. IMA J Manag Math 2000;11:49–70. Available at: http://dx.doi.org/10.1093/imaman/11.1.49.10.1093/imaman/11.1.49Search in Google Scholar

10. Crank J. Free and moving boundary problems, 1st ed. Oxford: Clarendon Press, 1984:425 p.Search in Google Scholar

11. Voller VR. An exact solution of a limit case Stefan problem governed by a fractional diffusion equation. Int J Heat Mass Transfer 2010;53:5622–5. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0017931010004163. Accessed: 7 Nov 2013.10.1016/j.ijheatmasstransfer.2010.07.038Search in Google Scholar

12. Voller VR, Falcini F. Two exact solutions of a Stefan problem with varying diffusivity. Int J Heat Mass Transfer 2013;58:80–5. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0017931012008496. Accessed: 7 Nov 2013.10.1016/j.ijheatmasstransfer.2012.11.003Search in Google Scholar

13. Mitchell SL, Vynnycky M, Gusev IG, Sazhin SS. An accurate numerical solution for the transient heating of an evaporating spherical droplet. Appl Math Comput 2011;217:9219–33. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0096300311005418. Accessed: 2 Dec 2013.10.1016/j.amc.2011.03.161Search in Google Scholar

14. Verma AK, Chandra S, Dhindaw BK. An alternative fixed grid method for solution of the classical one-phase Stefan problem. Appl Math Comput 2004;158:573–84. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0096300303010671. Accessed: 3 Dec 2013.10.1016/j.amc.2003.10.001Search in Google Scholar

15. Zhaochun W, Jianping L, Jingmei F. A novel algorithm for solving the classical Stefan problem. Therm Sci 2011;15:39–44. Available at: http://www.doiserbia.nb.rs/Article.aspx?ID=0354-983611039W. Accessed: 3 Dec 2013.10.2298/TSCI11S1039WSearch in Google Scholar

16. Laitinenb E, Valtterib T. Moving grid scheme for multiple moving boundaries. Comput Methods Appl Mech Eng 1998;167:345–53.10.1016/S0045-7825(98)00149-2Search in Google Scholar

17. Hu H, Argyropoulos SA. Mathematical modelling of solidification and melting: a review. Model Simul Mater Sci Eng 1996;4:371–96. Available at: http://stacks.iop.org/0965-0393/4/i=4/a=004?key=crossref.e3a3b1293a4d5f4b2ffceb22462fc5c8. Accessed: 14 Oct 2014.10.1088/0965-0393/4/4/004Search in Google Scholar

18. Caldwell J, Kwan YY. Numerical methods for one-dimensional Stefan problems. Commun Numer Methods Eng 2004;20:535–45. Available at: http://doi.wiley.com/10.1002/cnm.691. Accessed: 3 Dec 2013.10.1002/cnm.691Search in Google Scholar

19. Javierre E, Vuik C, Vermolen FJ, van der Zwaag S. A comparison of numerical models for one-dimensional Stefan problems. J Comput Appl Math 2006;192:445–59. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0377042705003730. Accessed: 7 Nov 2013.10.1016/j.cam.2005.04.062Search in Google Scholar

20. Mitchell SL, Vynnycky M. Finite-difference methods with increased accuracy and correct initialization for one-dimensional Stefan problems. Appl Math Comput 2009;215:1609–21. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0096300309006638. Accessed: 20 Nov 2013.10.1016/j.amc.2009.07.054Search in Google Scholar

21. Kutluay S, Bahadir AR, Özdeş A. The numerical solution of one-phase classical Stefan problem. J Comput Appl Math 1997;81:135–44. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0377042797000344. Accessed: 3 Dec 2013.10.1016/S0377-0427(97)00034-4Search in Google Scholar

22. Savović S, Caldwell J. Finite difference solution of one-dimensional Stefan problem with periodic boundary conditions. Int J Heat Mass Transfer 2003;46:2911–16. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0017931003000504. Accessed: 7 Nov 2013.10.1016/S0017-9310(03)00050-4Search in Google Scholar

23. Savovic S, Caldwell J. Numerical solution of Stefan problem with time-dependent boundary conditions by variable space grid method. Therm Sci 2009;13:165–74. Available at: http://www.doiserbia.nb.rs/Article.aspx?ID=0354-98360904165S. Accessed: 7 Nov 2013.10.2298/TSCI0904165SSearch in Google Scholar

24. Sadoun N, Si-Ahmed E-K, Colinet P, Legrand J. On the boundary immobilization and variable space grid methods for transient heat conduction problems with phase change: discussion and refinement. Compt Rend Mécaniq 2012;340:501–11. Available at: http://linkinghub.elsevier.com/retrieve/pii/S1631072112000630. Accessed: 3 Dec 2013.10.1016/j.crme.2012.03.003Search in Google Scholar

25. Viollaz PE, Suarez C. An equation for diffusion in shrinking or swelling bodies. J Polym Sci Polym Phys Ed 1984;22:875–9.10.1002/pol.1984.180220509Search in Google Scholar

26. Viollaz PE, Rovedo CO, Suarez C. Numerical treatment of transient diffusion in shrinking or swelling solids. Int Commun Heat Mass Transfer 1995;22:527–38. Available at: http://linkinghub.elsevier.com/retrieve/pii/073519339500038Z. Accessed: 3 Dec 2013.10.1016/0735-1933(95)00038-ZSearch in Google Scholar

27. Viollaz PE, Rovedo CO. A drying model for three-dimensional shrinking bodies. J Food Eng 2002;52:149–53. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0260877401000978.10.1016/S0260-8774(01)00097-8Search in Google Scholar

28. Smith GD. Numerical solution of partial differential equations: finite difference methods. New York: Oxford University Press, 1987:337 p.Search in Google Scholar

29. Murray WD, Landis F. Numerical and machine solutions of transient heat-conduction problems involving melting or freezing. J Heat Transfer 1959;81:106–12.10.1115/1.4008149Search in Google Scholar

30. Coutinho MR, Omoto ES, Conceição WA, Andrade CM, Jorge LM. Modeling of the soybean grains hydration by a distributed parameters approach. Int J Food Eng 2009;5. Available at: http://www.degruyter.com/view/j/ijfe.2009.5.3/ijfe.2009.5.3.1654/ijfe.2009.5.3.1654.xml. Accessed: 7 Nov 2013.10.2202/1556-3758.1654Search in Google Scholar

Published Online: 2015-8-28
Published in Print: 2015-10-1

©2015 by De Gruyter

Downloaded on 12.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijfe-2015-0035/html
Scroll to top button