Startseite Performance analysis and effective modeling of a solar photovoltaic module based on field tests
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Performance analysis and effective modeling of a solar photovoltaic module based on field tests

  • Ahmed Zouhir Kouache ORCID logo EMAIL logo , Ahmed Djafour und Khaled Mohammed Said Benzaoui
Veröffentlicht/Copyright: 30. Januar 2024

Abstract

In recent years, the demand for photovoltaic (PV) energy has increased parallel to scientific research on PV cells, including electrical modeling, characterization, and extraction of unknown parameters. Moreover, our main contribution in this paper focuses on experimental investigation of the effect of solar radiation and temperature on the performance of a small photovoltaic plant years after its installation in the Ouargla region. As in many parts of the world, this studied area has experienced rising temperatures due to climate change, affecting system outputs. Therefore, in the first phase, we offer to characterize PV modules in various conditions and analyze the electrical parameters’ performance. The results indicate solar radiation and temperature influence PV modules’ electrical parameters. Moreover, the temperature influences the open-circuit voltage, while solar radiation positively impacts the short-circuit current. On the other side, we determine the optimal parameters of these modules and develop an accurate PV model using the bald eagle search algorithm (BES), gradian-based optimizer algorithm (GBO), and whale optimization Algorithm (WOA) based on a single diode model. The achievements show that the BES and GBO algorithms give good results for the optimum estimation of the PV model compared to WOA, where the best fitness was recorded at 0.015608 with the lowest deviation of 0.012565 and 0.039588, respectively. However, the BES has generated the minimum error values and with minimum iteration number, which indicates that this technique is more stable and robust for PV module parameter extraction.


Corresponding author: Ahmed Zouhir Kouache, Faculté des Sciences Appliquées, Laboratoire LAGE, Univ Ouargla, Ouargla 30000, Algérie, E-mail:

Acknowledgments

We are particularly grateful to the LAGE laboratory at the University of Ouargla and the DGRSDT Algeria for providing us with the equipment used in this work.

  1. Research ethics: Not applicable

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

Abbreviation

BES

Bald Eagle Search Algorithm

FF

fill factor

GBO

gradient-based optimizer algorithm

GSR

gradient search rule

I ph

Photovoltaic current (A)

I sc

short-circuit current (A)

I 0

saturation current (A)

LEO

local escaping operator

MABE

mean absolute bias error

Max

maximum fitness value

MBE

mean bias error

Mean

average fitness value

Min

minimum fitness value

n

diode ideality factor

OF

objective function

P max

optimum power (W)

PV

Photovoltaic

RMSE

root mean square error

R p

parallel resistances (Ω).

R s

series resistances (Ω).

R 2

coefficient of determination

SDM

single diode model

Sdt

standard deviation

t-stat

t statistic

V oc

open-circuit voltage (V)

WOA

whale optimization algorithm.

References

1. Xing, Z, Liu, B. Application of blockchain technology in autonomous electricity transaction and settlement at the end of distribution network. Int J Emerg Elec Power Syst 2023;24:795–805. https://doi.org/10.1515/ijeeps-2022-0224.Suche in Google Scholar

2. Kouache, AZ, Djafour, A, Benzaoui, KMS, Touili, S, Ramdani, M. Optimal design of solar energy-based hydrogen refueling station: a case study of Touggourt, Algeria. J Phys Chem Res 2023;2:9–17. https://doi.org/10.58452/jpcr.v2i2.158.Suche in Google Scholar

3. Ray, PK, Das, P. Power quality improvement of single phase grid connected photovoltaic system. Int J Emerg Elec Power Syst 2017;18:2016–0097. https://doi.org/10.1515/ijeeps-2016-0097.Suche in Google Scholar

4. Gao, M, Lin, J, Liu, Z. Research progress on improving photovoltaic conversion efficiency in lunar rovers. Highlights Sci Eng Technol 2023;43:61–73. https://doi.org/10.54097/hset.v43i.7406.Suche in Google Scholar

5. Rakesh, N, Banerjee, S, Subramaniam, S, Babu, N. A simplified method for fault detection and identification of mismatch modules and strings in a grid-tied solar photovoltaic system. Int J Emerg Elec Power Syst 2020;21:2020–0001. https://doi.org/10.1515/ijeeps-2020-0001.Suche in Google Scholar

6. Hasan, K, Yousuf, SB, Tushar, MSHK, Das, BK, Das, P, Islam, MS. Effects of different environmental and operational factors on the PV performance: a comprehensive review. 2022;10:656–75. https://doi.org/10.1002/ese3.1043.Suche in Google Scholar

7. Said, SAM, Hassan, G, Walwil, HM, Al-Aqeeli, N. The effect of environmental factors and dust accumulation on photovoltaic modules and dust-accumulation mitigation strategies. Renew Sustain Energy Rev 2018;82:743–60. https://doi.org/10.1016/j.rser.2017.09.042.Suche in Google Scholar

8. Kalogirou, SA. Solar energy engineering: processes and systems, 1st ed. Burlington, MA, USA: Elsevier Academic Press; 2009:779 p.Suche in Google Scholar

9. Adinoyi, MJ, Said, SAM. Effect of dust accumulation on the power outputs of solar photovoltaic modules. Renew Energy 2013;60:633–6. https://doi.org/10.1016/j.renene.2013.06.014.Suche in Google Scholar

10. Fouad, MM, Shihata, LA, Morgan, EI. An integrated review of factors influencing the performance of photovoltaic panels. Renew Sustain Energy Rev 2017;80:1499–511. https://doi.org/10.1016/j.rser.2017.05.141.Suche in Google Scholar

11. Durisch, W, Bitnar, B, von Roth, F, Palfinger, G. Small thermophotovoltaic prototype systems. Sol Energy 2003;75:11–5. https://doi.org/10.1016/s0038-092x(03)00232-9.Suche in Google Scholar

12. Xiong, G, Zhang, J, Yuan, X, Shi, D, He, Y, Yao, G. Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm. Sol Energy 2018;176:742–61. https://doi.org/10.1016/j.solener.2018.10.050.Suche in Google Scholar

13. Khanna, V, Das, B, Bisht, D, Vandana, Singh, P. A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm. Renew Energy 2015;78:105–13. https://doi.org/10.1016/j.renene.2014.12.072.Suche in Google Scholar

14. Moustafa, G. Parameter identification of solar photovoltaic systems using an augmented subtraction-average-based optimizer. Eng 2023;4:1818–36. https://doi.org/10.3390/eng4030103.Suche in Google Scholar

15. Taleshian, T, Malekzadeh, M, Sadati, J. Parameters identification of photovoltaic solar cells using FIPSO-SQP algorithm. Optik 2023;283:170900. https://doi.org/10.1016/j.ijleo.2023.170900.Suche in Google Scholar

16. Yang, C, Su, C, Hu, H, Habibi, M, Safarpour, H, Amine Khadimallah, M. Performance optimization of photovoltaic and solar cells via a hybrid and efficient chimp algorithm. Sol Energy 2023;253:343–59. https://doi.org/10.1016/j.solener.2023.02.036.Suche in Google Scholar

17. Abd El-Mageed, AA, Abohany, AA, Saad, HM, Sallam, KM. Parameter extraction of solar photovoltaic models using queuing search optimization and differential evolution. Appl Soft Comput 2023;134:110032. https://doi.org/10.1016/j.asoc.2023.110032.Suche in Google Scholar

18. El-Dabah, MA, El-Sehiemy, RA, Hasanien, HM, Saad, B. Photovoltaic model parameters identification using Northern Goshawk Optimization algorithm. Energy 2023;262:125522. https://doi.org/10.1016/j.energy.2022.125522.Suche in Google Scholar

19. Chen, X, Ding, K, Yang, H, Zhang, J, Jiang, M, Gao, R, et al.. Research on real-time identification method of model parameters for the photovoltaic array. Appl Energy 2023;342:121157. https://doi.org/10.1016/j.apenergy.2023.121157.Suche in Google Scholar

20. Shen, F, Zhang, W, Cao, Y, Wang, Z, Yang, G, Shan, J, et al.. Parameter identification of photovoltaic discrete-time equivalent model using the bat algorithm. Energy Rep 2023;9:449–58. https://doi.org/10.1016/j.egyr.2023.04.166.Suche in Google Scholar

21. Das, S, Namrata, K, Ray, P. Dual model representation of solar photovoltaic cell. Int J Emerg Elec Power Syst 2022;23:381–9. https://doi.org/10.1515/ijeeps-2021-0042.Suche in Google Scholar

22. Merchaoui, M, Sakly, A, Mimouni, MF. Particle swarm optimisation with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction. Energy Convers Manag 2018;175:151–63. https://doi.org/10.1016/j.enconman.2018.08.081.Suche in Google Scholar

23. Alsattar, HA, Zaidan, AA, Zaidan, BB. Novel meta-heuristic bald eagle search optimisation algorithm. Artif Intell Rev 2020;53:2237–64. https://doi.org/10.1007/s10462-019-09732-5.Suche in Google Scholar

24. Ahmadianfar, I, Bozorg-Haddad, O, Chu, X. Gradient-based optimizer: a new metaheuristic optimization algorithm. Inf Sci 2020;540:131–59. https://doi.org/10.1016/j.ins.2020.06.037.Suche in Google Scholar

25. Rezk, H, Ferahtia, S, Djeroui, A, Chouder, A, Houari, A, Machmoum, M, et al.. Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer. Energy 2022;239:122096. https://doi.org/10.1016/j.energy.2021.122096.Suche in Google Scholar

26. Mirjalili, S, Lewis, A. The whale optimization algorithm. Adv Eng Softw 2016;95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008.Suche in Google Scholar

27. Danoune, MB, Djafour, A, Wang, Y, Gougui, A. The Whale Optimization Algorithm for efficient PEM fuel cells modeling. Int J Hydrogen Energy 2021;46:37599–611. https://doi.org/10.1016/j.ijhydene.2021.03.105.Suche in Google Scholar

28. Idoko, L, Anaya-Lara, O, McDonald, A. Enhancing PV modules efficiency and power output using multi-concept cooling technique. Energy Rep 2018;4:357–69. https://doi.org/10.1016/j.egyr.2018.05.004.Suche in Google Scholar

Received: 2023-09-19
Accepted: 2024-01-11
Published Online: 2024-01-30

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijeeps-2023-0338/html
Button zum nach oben scrollen