Startseite Design and analysis of closed loop control of power-converters for forming droop-controlled AC–DC subgrids of an islanded hybrid AC–DC microgrid
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Design and analysis of closed loop control of power-converters for forming droop-controlled AC–DC subgrids of an islanded hybrid AC–DC microgrid

  • R. V. S. E. Shravan ORCID logo EMAIL logo und C. Vyjayanthi
Veröffentlicht/Copyright: 16. Februar 2022

Abstract

Hybrid AC–DC microgrid (HMG) is formed by connecting separate AC and DC microgrids with an interlinking converter (IC). In islanded mode of operation of the HMG its AC and DC subgrids are droop controlled to achieve power-sharing. The power flow between the subgrids happens through the IC, which regulates the amount of power being transferred based on the values of the frequency of AC bus voltage and the voltage at the DC bus. This paper presents the utilization of power-electronic converters to form the droop-controlled AC–DC subgrids of an islanded HMG which will be beneficial for further studies of IC and HMG. The detailed design and analysis of the closed-loop control system parameters of both the power converters is presented. The results obtained from simulations carried out in MATLAB/Simulink, and the real-time simulation results obtained by implementation using OPAL-RT OP4500 real-time digital simulator hardware are presented for the verification.


Corresponding author: R. V. S. E. Shravan, Electrical and Electronics Engineering, National Institute of Technology Goa, Farmagudi, 403401 Ponda, Goa, India, E-mail:

Award Identifier / Grant number: ECR/2016/001421

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The research work presented in this paper is a part of funded project Grant No. ECR/2016/001421, financed by Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India. The authors would like to thank the research board for providing the funding.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Chiradeja, P, Ramakumar, R. An approach to quantify the technical benefits of distributed generation. IEEE Trans Energy Convers 2004;19:764–73. https://doi.org/10.1109/tec.2004.827704.Suche in Google Scholar

2. Dugan, RC, McDermott, TE. Distributed generation. IEEE Ind Appl Mag 2002;8:19–25. https://doi.org/10.1109/2943.985677.Suche in Google Scholar

3. Dugan, RC, Price, SK. Issues for distributed generation in the US. In: 2002 IEEE Power Engineering Society winter meeting. Conference proceedings. New York, NY, USA: IEEE; 2002:121–6 pp.10.1109/PESW.2002.984969Suche in Google Scholar

4. Piagi, P, Lasseter, RH. Autonomous control of microgrids. In: 2006 IEEE Power Engineering Society general meeting. QC, Canada: IEEE; 2006:8 p.10.1109/PES.2006.1708993Suche in Google Scholar

5. Lasseter, RH, Piagi, P. Microgrid: a conceptual solution. In: 2004 IEEE 35th annual power electronics specialists conference. Aachen, Germany: IEEE; 2004:4285–90 pp.Suche in Google Scholar

6. Nikkhajoei, H, Lasseter, RH. Distributed generation interface to the CERTS microgrid. IEEE Trans Power Deliv 2009;24:1598–608. https://doi.org/10.1109/tpwrd.2009.2021040.Suche in Google Scholar

7. Carrasco, JM, Franquelo, LG, Bialasiewicz, JT, Galvan, E, PortilloGuisado, RC, Prats, MAM, et al.. Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans Ind Electron 2006;53:1002–16. https://doi.org/10.1109/tie.2006.878356.Suche in Google Scholar

8. Boroyevich, D, Cvetković, I, Dong, D, Burgos, R, Wang, F, Lee, F, et al.. Future electronic power distribution systems a contemplative view. In: 2010 12th international conference on optimization of electrical and electronic equipment. Brasov, Romania: IEEE; 2010:1369–80 pp.10.1109/OPTIM.2010.5510477Suche in Google Scholar

9. Wei, X, Xiangning, X, Pengwei, C. Overview of key microgrid technologies. Int Trans Electr Energy Syst 2018;28:e2566. https://doi.org/10.1002/etep.2566.Suche in Google Scholar

10. Anand, S, Fernandes, BG. Optimal voltage level for DC microgrids. In: IECON 2010 – 36th annual conference on IEEE Industrial Electronics Society. Glendale, AZ, USA: IEEE; 2010:3034–9 pp.10.1109/IECON.2010.5674947Suche in Google Scholar

11. Kakigano, H, Miura, Y, Ise, T. Low-voltage bipolar type DC microgrid for super high quality distribution. IEEE Trans Power Electron 2010;25:3066–75. https://doi.org/10.1109/tpel.2010.2077682.Suche in Google Scholar

12. Liu, X, Wang, P, Loh, PC. A hybrid AC/DC microgrid and its coordination control. IEEE Trans Smart Grid 2011;2:278–86. https://doi.org/10.1109/tsg.2011.2116162.Suche in Google Scholar

13. Jirdehi, MA, Tabar, VS, Ghassemzadeh, S, Tohidi, S. Different aspects of micro-grid management: a comprehensive review. J Energy Storage 2020;30:101457. https://doi.org/10.1016/j.est.2020.101457.Suche in Google Scholar

14. Unamuno, E, Barrena, JA. Hybrid AC/DC microgrids – part I: review and classification of topologies. Renew Sustain Energy Rev 2015;52:1251–9. https://doi.org/10.1016/j.rser.2015.07.194.Suche in Google Scholar

15. Pecas Lopes, JA, Moreira, CL, Madureira, AG. Defining control strategies for analysing microgrids islanded operation. In: 2005 IEEE Russia power tech. St. Petersburg, Russia: IEEE; 2005:1–7 pp.10.1109/PTC.2005.4524548Suche in Google Scholar

16. Guerrero, JM, Vasquez, JC, Matas, J, de Vicuna, LG, Castilla, M. Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization. IEEE Trans Ind Electron 2011;58:158–72. https://doi.org/10.1109/tie.2010.2066534.Suche in Google Scholar

17. Guerrero, JM, Chandorkar, M, Lee, TL, Loh, PC. Advanced control architectures for intelligent microgrids—part I: decentralized and hierarchical control. IEEE Trans Ind Electron 2013;60:1254–62. https://doi.org/10.1109/tie.2012.2194969.Suche in Google Scholar

18. Ahmed, M, Meegahapola, L, Vahidnia, A, Datta, M. Stability and control aspects of microgrid architectures – a comprehensive review. IEEE Access 2020;8:144730–66. https://doi.org/10.1109/access.2020.3014977.Suche in Google Scholar

19. Vandoorn, TL, De Kooning, JDM, Meersman, B, Vandevelde, L. Review of primary control strategies for islanded microgrids with power-electronic interfaces. Renew Sustain Energy Rev 2013;19:613–28. https://doi.org/10.1016/j.rser.2012.11.062.Suche in Google Scholar

20. Rokrok, E, Shafie-Khah, M, Catalão, JP. Review of primary voltage and frequency control methods for inverter-based islanded microgrids with distributed generation. Renew Sustain Energy Rev 2018;82:3225–35. https://doi.org/10.1016/j.rser.2017.10.022.Suche in Google Scholar

21. Mohammed, A, Refaat, SS, Bayhan, S, Abu-Rub, H. AC microgrid control and management strategies: evaluation and review. IEEE Power Electron Mag 2019;6:18–31. https://doi.org/10.1109/mpel.2019.2910292.Suche in Google Scholar

22. Sahoo, SK, Sinha, AK, Kishore, NK. Control techniques in AC, DC, and hybrid AC–DC microgrid: a review. IEEE J Emerg Sel Top Power Electron 2017;6:738–59.10.1109/JESTPE.2017.2786588Suche in Google Scholar

23. Han, H, Hou, X, Yang, J, Wu, J, Su, M, Guerrero, JM. Review of power sharing control strategies for islanding operation of AC microgrids. IEEE Trans Smart Grid 2016;7:200–15. https://doi.org/10.1109/tsg.2015.2434849.Suche in Google Scholar

24. Han, Y, Li, H, Shen, P, Coelho, EA, Guerrero, JM. Review of active and reactive power sharing strategies in hierarchical controlled microgrids. IEEE Trans Power Electron 2017;32:2427–51. https://doi.org/10.1109/tpel.2016.2569597.Suche in Google Scholar

25. Olivares, DE, Mehrizi-Sani, A, Etemadi, AH, Cañizares, CA, Iravani, R, Kazerani, M, et al.. Trends in microgrid control. IEEE Trans Smart Grid 2014;5:1905–19. https://doi.org/10.1109/tsg.2013.2295514.Suche in Google Scholar

26. Wang, J, Dong, C, Jin, C, Lin, P, Wang, P. Distributed uniform control for parallel bidirectional interlinking converters for resilient operation of hybrid AC/DC microgrid. IEEE Trans Sustain Energy 2022;13:3–13. https://doi.org/10.1109/tste.2021.3095085.Suche in Google Scholar

27. Hou, X, Sun, K, Zhang, N, Teng, F, Zhang, X, Green, TC. Priority-driven self-optimizing power control scheme for interlinking converters of hybrid AC/DC microgrid clusters in decentralized manner. IEEE Trans Power Electron 2021 Dec 1. https://doi.org/10.1109/TPEL.2021.3130112 [Epub ahead of print].Suche in Google Scholar

28. Chang, JW, Lee, GS, Moon, SI, Hwang, PI. A novel distributed control method for interlinking converters in an islanded hybrid AC/DC microgrid. IEEE Trans Smart Grid 2021;12:3765–79. https://doi.org/10.1109/tsg.2021.3074706.Suche in Google Scholar

29. Malik, SM, Sun, Y, Ai, X, Chen, Z, Wang, K. Cost-based droop scheme for converters in interconnected hybrid microgrids. IEEE Access 2019;7:82266–76. https://doi.org/10.1109/access.2019.2923600.Suche in Google Scholar

30. Nempu, PB, Jayalakshmi, NS. Coordinated power management of the subgrids in a hybrid AC–DC microgrid with multiple renewable sources. IETE J Res 2020;22:1.Suche in Google Scholar

31. Lin, P, Jin, C, Xiao, J, Li, X, Shi, D, Tang, Y, et al.. A distributed control architecture for global system economic operation in autonomous hybrid AC/DC microgrids. IEEE Trans Smart Grid 2019;10:2603–17. https://doi.org/10.1109/tsg.2018.2805839.Suche in Google Scholar

32. Wang, J, Jin, C, Wang, P. A uniform control strategy for the interlinking converter in hierarchical controlled hybrid AC/DC microgrids. IEEE Trans Ind Electron 2018;65:6188–97. https://doi.org/10.1109/tie.2017.2784349.Suche in Google Scholar

33. Mortezapour, V, Lesani, H. Hybrid AC/DC microgrids: a generalized approach for autonomous droop-based primary control in islanded operations. Int J Electr Power Energy Syst 2017;93:109–18. https://doi.org/10.1016/j.ijepes.2017.05.022.Suche in Google Scholar

34. Jin, C, Wang, J, Wang, P. Coordinated secondary control for autonomous hybrid three-port AC/DC/DS microgrid. CSEE J Power Energy Syst 2018;4:1–10. https://doi.org/10.17775/cseejpes.2016.01400.Suche in Google Scholar

35. Baharizadeh, M, Karshenas, HR, Guerrero, JM. Control strategy of interlinking converters as the key segment of hybrid AC–DC microgrids. IET Gener, Transm Distrib 2016;10:1671–81. https://doi.org/10.1049/iet-gtd.2015.1014.Suche in Google Scholar

36. Eghtedarpour, N, Farjah, E. Power control and management in a hybrid AC/DC microgrid. IEEE Trans Smart Grid 2014;5:1494–505. https://doi.org/10.1109/tsg.2013.2294275.Suche in Google Scholar

37. Tripathi, SM, Tiwari, AN, Singh, D. Optimum design of proportional-integral controllers in grid-integrated PMSG-based wind energy conversion system. Int Trans Electr Energy Syst 2016;26:1006–31. https://doi.org/10.1002/etep.2120.Suche in Google Scholar

38. Basilio, JC, Matos, SR. Design of PI and PID controllers with transient performance specification. IEEE Trans Educ 2002;45:364–70. https://doi.org/10.1109/te.2002.804399.Suche in Google Scholar

39. Krohling, RA, Rey, JP. Design of optimal disturbance rejection PID controllers using genetic algorithms. IEEE Trans Evol Comput 2001;5:78–82. https://doi.org/10.1109/4235.910467.Suche in Google Scholar

40. Gaing, ZL. A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans Energy Convers 2004;19:384–91. https://doi.org/10.1109/tec.2003.821821.Suche in Google Scholar

41. Neath, MJ, Swain, AK, Madawala, UK, Thrimawithana, DJ. An optimal PID controller for a bidirectional inductive power transfer system using multiobjective genetic algorithm. IEEE Trans Power Electron 2014;29:1523–31. https://doi.org/10.1109/tpel.2013.2262953.Suche in Google Scholar

42. Misra, H, Jain, AK. Control of AC–DC grid side converter with single AC current sensor. Sadhana 2017;42:2099–112. https://doi.org/10.1007/s12046-017-0750-5.Suche in Google Scholar

43. Bierhoff, MH, Fuchs, FW. Active damping for three-phase PWM rectifiers with high-order line-side filters. IEEE Trans Ind Electron 2009;56:371–9. https://doi.org/10.1109/tie.2008.2007950.Suche in Google Scholar

44. Prasad, JSS, Bhavsar, T, Ghosh, R, Narayanan, G. Vector control of three-phase AC/DC front-end converter. Sadhana 2008;33:591–613. https://doi.org/10.1007/s12046-008-0045-y.Suche in Google Scholar

45. Loh, PC, Li, D, Chai, YK, Blaabjerg, F. Autonomous operation of hybrid microgrid with AC and DC subgrids. IEEE Trans Power Electron 2013;28:2214–23. https://doi.org/10.1109/tpel.2012.2214792.Suche in Google Scholar

46. Shravan, RVSE, Vyjayanthi, C. Active power filtering using interlinking converter in droop controlled islanded hybrid AC–DC microgrid. Int Trans Electr Energy Syst 2020;30:e12333. https://doi.org/10.1002/2050-7038.12333.Suche in Google Scholar

47. Khan, O, Acharya, S, Al Hosani, M, El Moursi, MS. Hill climbing power flow algorithm for hybrid DC/AC microgrids. IEEE Trans Power Electron 2018;33:5532–7. https://doi.org/10.1109/tpel.2017.2779238.Suche in Google Scholar

48. Lee, J, Kim, Y, Moon, S. Novel supervisory control method for islanded droop-based AC/DC microgrids. IEEE Trans Power Syst 2019;34:2140–51. https://doi.org/10.1109/tpwrs.2018.2886051.Suche in Google Scholar

49. Lv, Z, Zhang, Y, Yu, M, Xia, Y, Wei, W, et al.. Decentralised coordinated energy management for hybrid AC/DC microgrid by using fuzzy control strategy. IET Renew Power Gener 2020;14:2649–56. https://doi.org/10.1049/iet-rpg.2019.1281.Suche in Google Scholar

50. Li, Z, Shahidehpour, M. Small-signal modeling and stability analysis of hybrid AC/DC microgrids. IEEE Trans Smart Grid 2019;10:2080–95. https://doi.org/10.1109/tsg.2017.2788042.Suche in Google Scholar

51. Umland, JW, Safiuddin, M. Magnitude and symmetric optimum criterion for the design of linear control systems: what is it and how does it compare with the others? IEEE Trans Ind Appl 1990;26:489–97. https://doi.org/10.1109/28.55967.Suche in Google Scholar

52. Papadopoulos, KG, Margaris, NI. Extending the symmetrical optimum criterion to the design of PID type-p control loops. J Process Control 2012;22:11–25. https://doi.org/10.1016/j.jprocont.2011.10.014.Suche in Google Scholar

53. Bajracharya, C, Molinas, M, Suul, JA, Undeland, TM. Understanding of tuning techniques of converter controllers for VSC-HVDC. In: Nordic workshop on power and industrial electronics (NORPIE/2008). Helsinki University of Technology, Espoo, Finland; 2008.Suche in Google Scholar

Received: 2021-10-07
Accepted: 2022-02-02
Published Online: 2022-02-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijeeps-2021-0364/html
Button zum nach oben scrollen