Startseite Adaptive relay settings for distribution network with distributed generation (DG) using Sugeno fuzzy inference
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Adaptive relay settings for distribution network with distributed generation (DG) using Sugeno fuzzy inference

  • Anudevi Samuel ORCID logo EMAIL logo und Vinayak N. Shet
Veröffentlicht/Copyright: 25. Dezember 2020

Abstract

The rapid increase in the power demand and the capacity shortage of transmission and distribution system drives the integration of Distributed Generation (DG) units in electrical power distribution networks. The integration of DG resources with distribution network can cause significant impacts in protection due to the bidirectional flow of current, particularly the changes in magnitude and direction of short circuit currents. It may also lead to false tripping or fail to trip the over current protection relays in the power system. The relay parameters have to adapt to the changes in the system to avoid unnecessary trippings. The proposed adaptive over current protection scheme, sets the parameters of the relays according to the changes in the network. This method determines the plug multiplier settings (PMS) and the time multiplier settings (TMS) using Sugeno Fuzzy Inference System (SFIS). The proposed methodology is tested for IEEE 13 bus system and 33 bus system and with the obtained adaptive relay settings, the validation for relay coordination is done using ETAP.


Corresponding author: Anudevi Samuel, Goa Engineering College, 403401Ponda, India, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Razavi, F, Abyaneh, HA, Al-Dabbagh, M, Mohammadi, R, Torkaman, H. A new comprehensive genetic algorithm method for optimal overcurrent relays coordination. Elec Power Syst Res 2008;78:713–20. https://doi.org/10.1016/j.epsr.2007.05.013.Suche in Google Scholar

2. Mohammadi, R, Abyaneh, HA, Razavi, F, Al-Dabbagh, M, Sadeghi, SHH. Optimal relays coordination efficient method in interconnected power systems. J Electr Eng 2010;61:75–83. https://doi.org/10.2478/v10187-010-0011-x.Suche in Google Scholar

3. Bedekar, PP, Bhide, SR. Optimum coordination of overcurrent relay timing using continuous genetic algorithm. Expert Syst Appl 2011;38:11286–92. https://doi.org/10.1016/j.eswa.2011.02.177.Suche in Google Scholar

4. So, CW, Li, KK. Time coordination method for power system protection by evolutionary algorithm. IEEE Trans Ind Appl 2000;36:1235–40. https://doi.org/10.1109/28.871269.Suche in Google Scholar

5. Adelnia, F, Moravej, Z, Farzinfar, M. A new formulation for coordination of directional overcurrent relays in interconnected networks. Int Trans Electr Energy Syst 2015;25:120–37. https://doi.org/10.1002/etep.1828.Suche in Google Scholar

6. Keil, T, Jäger, J. Advanced coordination method for overcurrent protection relays using nonstandard tripping characteristics. IEEE Trans Power Deliv 2008;23:52–7. https://doi.org/10.1109/tpwrd.2007.905337.Suche in Google Scholar

7. Salazar, CAC, Enríquez, AC, Schaeffer, SE. Directional overcurrent relay coordination considering non-standardized time curves. Elec Power Syst Res 2015;122:42–9. https://doi.org/10.1016/j.epsr.2014.12.018.Suche in Google Scholar

8. Saleh, KA, Zeineldin, HH, Al-Hinai, A, El-Saadany, EF. Optimal coordination of directional overcurrent relays using a new time–current–voltage characteristic. IEEE Trans Power Deliv 2015;30:537–44. https://doi.org/10.1109/tpwrd.2014.2341666.Suche in Google Scholar

9. Amraee, T. Coordination of directional overcurrent relays using seeker algorithm. IEEE Trans Power Deliv 2012;27:1415–22. https://doi.org/10.1109/tpwrd.2012.2190107.Suche in Google Scholar

10. Moravej, Z, Adelnia, F, Abbasi, F. Optimal coordination of directional overcurrent relays using NSGA-II. Elec Power Syst Res 2015;119:228–36. https://doi.org/10.1016/j.epsr.2014.09.010.Suche in Google Scholar

11. Alam, MN, Das, B, Pant, V. A comparative study of metaheuristic optimization approaches for directional overcurrent relays coordination. Elec Power Syst Res 2015;128:39–52. https://doi.org/10.1016/j.epsr.2015.06.018.Suche in Google Scholar

12. Alam, MN, Das, B, Pant, V. An interior point method based protection coordination scheme for directional overcurrent relays in meshed networks. Int J Electr Power Energy Syst 2016;81:153–64. https://doi.org/10.1016/j.ijepes.2016.02.012.Suche in Google Scholar

13. Alkaran, DS, Vatani, MR, Sanjari, MJ, Gharehpetian, GB, Naderi, MS. Optimal “overcurrent relay coordination in interconnected networks by using fuzzy-based GA method”. IEEE Trans Smart Grid 2018;9:1–11. https://doi.org/10.1109/tsg.2016.2626393.Suche in Google Scholar

14. El-Khattam, W, Sidhu, TS. Restoration of directional overcurrent relay coordination in distributed generation systems utilizing fault current limiter. IEEE Trans Power Deliv 2008;23:576–85. https://doi.org/10.1109/tpwrd.2008.915778.Suche in Google Scholar

15. Kim, Y, Jo, HC, Joo, SK. Analysis of impacts of superconducting fault current limiter (SFCL) placement on distributed generation (DG) expansion. IEEE Trans Appl Supercond 2016;26:1–5. https://doi.org/10.1109/tasc.2016.2550598.Suche in Google Scholar

16. Esmaeili, A, Esmaeili, S, Hojabri, H. Short-circuit level control through a multi-objective feeder reconfiguration using fault current limiters in the presence of distributed generations. IET Gener, Transm Distrib 2016;10:3458–69. https://doi.org/10.1049/iet-gtd.2016.0013.Suche in Google Scholar

17. Noghabi, AS, Sadeh, J, Mashhadi, HR. Considering different network topologies in optimal overcurrent relay coordination using a hybrid GA. IEEE Trans Power Deliv 2009;24:1857–63. https://doi.org/10.1109/tpwrd.2009.2029057.Suche in Google Scholar

18. Bedekar, PP, Bhide, SR. Optimum coordination of directional overcurrent relays using the hybrid GA-NLP approach. IEEE Trans Power Deliv 2011;26:109–19. https://doi.org/10.1109/tpwrd.2010.2080289.Suche in Google Scholar

19. Albasri, FA, Alroomi, AR, Talaq, JH. Optimal coordination of directional overcurrent relays using biogeography-based optimization algorithms. IEEE Trans Power Deliv 2015;30:1810–20. https://doi.org/10.1109/tpwrd.2015.2406114.Suche in Google Scholar

20. Srivastava, A, Tripathi, JM, Mohanty, SR, Panda, B. Optimal over-current relay coordination with distributed generation using hybrid particle swarm optimization gravitational search algorithm. Elec Power Compon Syst 2016;44:506–17. https://doi.org/10.1080/15325008.2015.1117539.Suche in Google Scholar

21. Rajput, VN, Adelnia, F, Pandya, KS. Optimal coordination of directional overcurrent relays using improved mathematical formulation IET Gener. Transm Distrib 2018;12:2086–94. https://doi.org/10.1049/iet-gtd.2017.0945.Suche in Google Scholar

22. Saksornchai, T, Eua-arporn, B. Load variation impact on allowable output power of distributed generator with loss consideration. IEEJ Trans Electr Electron Eng 2011;7:46–52. https://doi.org/10.1002/tee.21694.Suche in Google Scholar

23. Hsieh, S, Chen, C, Tsai, C, Hsu, C, Lin, C. Adaptive relay setting for distribution systems considering operation scenarios of wind generators. IEEE Trans Ind Appl 2014;50:1356–63. https://doi.org/10.1109/tia.2013.2274613.Suche in Google Scholar

24. Ghaffarzadeh, N, Heydari, S. Optimal coordination of digital overcurrent relays using black hole algorithm. World Appl Program 2015;5:50–5.Suche in Google Scholar

Received: 2020-07-16
Accepted: 2020-12-07
Published Online: 2020-12-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 11.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijeeps-2020-0152/html
Button zum nach oben scrollen