Abstract
The optimal size and location of the compensator in the distribution system play a significant role in minimizing the energy loss and the cost of reactive power compensation. This article introduces an efficient heuristic-based approach to assign static shunt capacitors along radial distribution networks using multi-objective optimization method. A new objective function different from literature is adapted to enhance the overall system voltage stability index, minimize power loss, and to achieve maximum net yearly savings. However, the capacitor sizes are assumed as discrete known variables, which are to be placed on the buses such that it reduces the losses of the distribution system to a minimum. Load sensitive factor (LSF) has been used to predict the most effective buses as the best place for installing compensator devices. IEEE 34-bus and 118-bus test distribution systems are utilized to validate and demonstrate the applicability of the proposed method. The simulation results obtained are compared with previous methods reported in the literature and found to be encouraging.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
Appendix
See Tables 5 and 6.
IEEE-34 bus test system data.
Line No | From bus | To bus | R (Ω) | X (Ω) | P (kW) | Q (kVAr) |
---|---|---|---|---|---|---|
1 | 1 | 2 | 0.117 | 0.048 | 230 | 142.5 |
2 | 2 | 3 | 0.1073 | 0.044 | 0 | 0 |
3 | 3 | 4 | 0.1645 | 0.0457 | 230 | 142.5 |
4 | 4 | 5 | 0.1495 | 0.0415 | 230 | 142.5 |
5 | 5 | 6 | 0.1495 | 0.0415 | 0 | 0 |
6 | 6 | 7 | 0.3144 | 0.054 | 0 | 0 |
7 | 7 | 8 | 0.2096 | 0.036 | 230 | 142.5 |
8 | 8 | 9 | 0.3144 | 0.054 | 230 | 142.5 |
9 | 9 | 10 | 0.2096 | 0.036 | 0 | 0 |
10 | 10 | 11 | 0.131 | 0.0225 | 230 | 142.5 |
11 | 11 | 12 | 0.1048 | 0.018 | 137 | 84 |
12 | 3 | 13 | 0.1572 | 0.027 | 72 | 45 |
13 | 13 | 14 | 0.2096 | 0.036 | 72 | 45 |
14 | 14 | 15 | 0.1048 | 0.018 | 72 | 45 |
15 | 15 | 16 | 0.0524 | 0.009 | 13.5 | 7.5 |
16 | 6 | 17 | 0.1794 | 0.0498 | 230 | 142.5 |
17 | 17 | 18 | 0.1645 | 0.0457 | 230 | 142.5 |
18 | 18 | 19 | 0.2079 | 0.0473 | 230 | 142.5 |
19 | 19 | 20 | 0.189 | 0.043 | 230 | 142.5 |
20 | 20 | 21 | 0.189 | 0.043 | 230 | 142.5 |
21 | 21 | 22 | 0.262 | 0.045 | 230 | 142.5 |
22 | 22 | 23 | 0.262 | 0.045 | 230 | 142.5 |
23 | 23 | 24 | 0.3144 | 0.054 | 230 | 142.5 |
24 | 24 | 25 | 0.2096 | 0.036 | 230 | 142.5 |
25 | 25 | 26 | 0.131 | 0.0225 | 230 | 142.5 |
26 | 26 | 27 | 0.1048 | 0.018 | 137 | 85 |
27 | 7 | 28 | 0.1572 | 0.027 | 75 | 48 |
28 | 28 | 29 | 0.1572 | 0.027 | 75 | 48 |
29 | 29 | 30 | 0.1572 | 0.027 | 75 | 48 |
30 | 10 | 31 | 0.1572 | 0.027 | 57 | 34.5 |
31 | 31 | 32 | 0.2096 | 0.036 | 57 | 34.5 |
32 | 32 | 33 | 0.1572 | 0.027 | 57 | 34.5 |
33 | 33 | 34 | 0.1048 | 0.018 | 57 | 34.5 |
IEEE-118 bus test system data.
Line no | From bus | To bus | R (Ω) | X (Ω) | P (kW) | Q (kVAr) |
---|---|---|---|---|---|---|
1 | 1 | 2 | 0.036 | 0.01,296 | 133.84 | 101.14 |
2 | 2 | 3 | 0.033 | 0.01,188 | 16.214 | 11.292 |
3 | 2 | 4 | 0.045 | 0.0162 | 34.315 | 21.845 |
4 | 4 | 5 | 0.015 | 0.054 | 73.016 | 63.602 |
5 | 5 | 6 | 0.015 | 0.054 | 144.2 | 68.604 |
6 | 6 | 7 | 0.015 | 0.0125 | 104.47 | 61.725 |
7 | 7 | 8 | 0.018 | 0.014 | 28.547 | 11.503 |
8 | 8 | 9 | 0.021 | 0.063 | 87.56 | 51.073 |
9 | 2 | 10 | 0.166 | 0.1344 | 198.2 | 106.77 |
10 | 10 | 11 | 0.112 | 0.0789 | 146.8 | 75.995 |
11 | 11 | 12 | 0.187 | 0.313 | 26.04 | 18.687 |
12 | 12 | 13 | 0.142 | 0.1512 | 52.1 | 23.22 |
13 | 13 | 14 | 0.18 | 0.118 | 141.9 | 117.5 |
14 | 14 | 15 | 0.15 | 0.045 | 21.87 | 28.79 |
15 | 15 | 16 | 0.16 | 0.18 | 33.37 | 26.45 |
16 | 16 | 17 | 0.157 | 0.171 | 32.43 | 25.23 |
17 | 11 | 18 | 0.218 | 0.285 | 20.234 | 11.906 |
18 | 18 | 19 | 0.118 | 0.185 | 156.94 | 78.523 |
19 | 19 | 20 | 0.16 | 0.196 | 546.29 | 351.4 |
20 | 20 | 21 | 0.12 | 0.189 | 180.31 | 164.2 |
21 | 21 | 22 | 0.12 | 0.0789 | 93.167 | 54.594 |
22 | 22 | 23 | 1.41 | 0.723 | 85.18 | 39.65 |
23 | 23 | 24 | 0.293 | 0.1348 | 168.1 | 95.178 |
24 | 24 | 25 | 0.133 | 0.104 | 125.11 | 150.22 |
25 | 25 | 26 | 0.178 | 0.134 | 16.03 | 24.62 |
26 | 26 | 27 | 0.178 | 0.134 | 26.03 | 24.62 |
27 | 4 | 28 | 0.015 | 0.0296 | 594.56 | 522.62 |
28 | 28 | 29 | 0.012 | 0.0276 | 120.62 | 59.117 |
29 | 29 | 30 | 0.12 | 0.2766 | 102.38 | 99.554 |
30 | 30 | 31 | 0.21 | 0.243 | 513.4 | 318.5 |
31 | 31 | 32 | 0.12 | 0.054 | 475.25 | 456.14 |
32 | 32 | 33 | 0.178 | 0.234 | 151.43 | 136.79 |
33 | 33 | 34 | 0.178 | 0.234 | 205.38 | 83.302 |
34 | 34 | 35 | 0.154 | 0.162 | 131.6 | 93.082 |
35 | 35 | 36 | 0.187 | 0.261 | 448.4 | 369.79 |
36 | 36 | 37 | 0.133 | 0.099 | 440.52 | 321.64 |
37 | 37 | 38 | 0.33 | 0.194 | 112.54 | 55.134 |
38 | 38 | 39 | 0.31 | 0.194 | 53.963 | 38.998 |
39 | 39 | 40 | 0.13 | 0.194 | 393.05 | 342.6 |
40 | 40 | 41 | 0.28 | 0.15 | 326.74 | 278.56 |
41 | 41 | 42 | 1.18 | 0.85 | 536.26 | 240.24 |
42 | 42 | 43 | 0.42 | 0.2436 | 76.247 | 66.562 |
43 | 29 | 44 | 0.27 | 0.0972 | 53.52 | 39.76 |
44 | 44 | 45 | 0.339 | 0.1221 | 40.328 | 31.964 |
45 | 45 | 46 | 0.27 | 0.1779 | 39.653 | 20.758 |
46 | 46 | 47 | 0.21 | 0.1383 | 66.195 | 42.361 |
47 | 47 | 48 | 0.12 | 0.0789 | 73.904 | 51.653 |
48 | 48 | 49 | 0.15 | 0.0987 | 114.77 | 57.965 |
49 | 49 | 50 | 0.15 | 0.0987 | 918.37 | 1205.1 |
50 | 50 | 51 | 0.24 | 0.1581 | 210.3 | 146.66 |
51 | 51 | 52 | 0.12 | 0.0789 | 66.68 | 56.608 |
52 | 29 | 53 | 0.405 | 0.1458 | 42.207 | 40.184 |
53 | 53 | 54 | 0.405 | 0.1458 | 433.74 | 283.41 |
54 | 54 | 55 | 0.391 | 0.141 | 62.1 | 26.86 |
55 | 55 | 56 | 0.406 | 0.1461 | 92.46 | 88.38 |
56 | 56 | 57 | 0.406 | 0.1461 | 85.188 | 55.436 |
57 | 57 | 58 | 0.706 | 0.5461 | 345.3 | 332.4 |
58 | 58 | 59 | 0.338 | 0.1218 | 22.5 | 16.83 |
59 | 59 | 60 | 0.338 | 0.1218 | 80.551 | 49.156 |
60 | 30 | 61 | 0.207 | 0.0747 | 95.86 | 90.758 |
61 | 61 | 62 | 0.247 | 0.8922 | 62.92 | 47.7 |
62 | 1 | 63 | 0.028 | 0.0418 | 478.8 | 463.74 |
63 | 63 | 64 | 0.117 | 0.2016 | 120.94 | 52.006 |
64 | 64 | 65 | 0.255 | 0.0918 | 139.11 | 100.34 |
65 | 65 | 66 | 0.21 | 0.0759 | 391.78 | 193.5 |
66 | 66 | 67 | 0.383 | 0.138 | 27.741 | 26.713 |
67 | 67 | 68 | 0.504 | 0.3303 | 52.814 | 25.257 |
68 | 68 | 69 | 0.406 | 0.1461 | 66.89 | 38.713 |
69 | 69 | 70 | 0.962 | 0.761 | 467.5 | 395.14 |
70 | 70 | 71 | 0.165 | 0.06 | 594.85 | 239.74 |
71 | 71 | 72 | 0.303 | 0.1092 | 132.5 | 84.363 |
72 | 72 | 73 | 0.303 | 0.1092 | 52.699 | 22.482 |
73 | 73 | 74 | 0.206 | 0.144 | 869.79 | 614.775 |
74 | 74 | 75 | 0.233 | 0.084 | 31.349 | 29.817 |
75 | 75 | 76 | 0.591 | 0.1773 | 192.39 | 122.43 |
76 | 76 | 77 | 0.126 | 0.0453 | 65.75 | 45.37 |
77 | 64 | 78 | 0.559 | 0.3687 | 238.15 | 223.22 |
78 | 78 | 79 | 0.186 | 0.1227 | 294.55 | 162.47 |
79 | 79 | 80 | 0.186 | 0.1227 | 485.57 | 437.92 |
80 | 80 | 81 | 0.26 | 0.139 | 243.53 | 183.03 |
81 | 81 | 82 | 0.154 | 0.148 | 243.53 | 183.03 |
82 | 82 | 83 | 0.23 | 0.128 | 134.25 | 119.29 |
83 | 83 | 84 | 0.252 | 0.106 | 22.71 | 27.96 |
84 | 84 | 85 | 0.18 | 0.148 | 49.513 | 26.515 |
85 | 79 | 86 | 0.16 | 0.182 | 383.78 | 257.16 |
86 | 86 | 87 | 0.2 | 0.23 | 49.64 | 20.6 |
87 | 87 | 88 | 0.16 | 0.393 | 22.473 | 11.806 |
88 | 65 | 89 | 0.669 | 0.2412 | 62.93 | 42.96 |
89 | 89 | 90 | 0.266 | 0.1227 | 30.67 | 34.93 |
90 | 90 | 91 | 0.266 | 0.1227 | 62.53 | 66.79 |
91 | 91 | 92 | 0.266 | 0.1227 | 114.57 | 81.748 |
92 | 92 | 93 | 0.266 | 0.1227 | 81.292 | 66.526 |
93 | 93 | 94 | 0.233 | 0.115 | 31.733 | 15.96 |
94 | 94 | 95 | 0.496 | 0.138 | 33.32 | 60.48 |
95 | 91 | 96 | 0.196 | 0.18 | 531.28 | 224.85 |
96 | 96 | 97 | 0.196 | 0.18 | 507.03 | 367.42 |
97 | 97 | 98 | 0.1866 | 0.122 | 26.39 | 11.7 |
98 | 98 | 99 | 0.0746 | 0.318 | 45.99 | 30.392 |
99 | 1 | 100 | 0.0625 | 0.0265 | 100.66 | 47.572 |
100 | 100 | 101 | 0.1501 | 0.234 | 456.48 | 350.3 |
101 | 101 | 102 | 0.1347 | 0.0888 | 522.56 | 449.29 |
102 | 102 | 103 | 0.2307 | 0.1203 | 408.43 | 168.46 |
103 | 103 | 104 | 0.447 | 0.1608 | 141.48 | 134.25 |
104 | 104 | 105 | 0.1632 | 0.0588 | 104.43 | 66.024 |
105 | 105 | 106 | 0.33 | 0.099 | 96.793 | 83.647 |
106 | 106 | 107 | 0.156 | 0.0561 | 493.92 | 419.34 |
107 | 107 | 108 | 0.3819 | 0.1374 | 225.38 | 135.88 |
108 | 108 | 109 | 0.1626 | 0.0585 | 509.21 | 387.21 |
109 | 109 | 110 | 0.3819 | 0.1374 | 188.5 | 173.46 |
110 | 110 | 111 | 0.2445 | 0.0879 | 918.03 | 898.55 |
111 | 111 | 112 | 0.2088 | 0.0753 | 305.08 | 215.37 |
112 | 100 | 113 | 0.2301 | 0.0828 | 54.38 | 40.97 |
113 | 113 | 114 | 0.6102 | 0.2196 | 211.14 | 192.9 |
114 | 114 | 115 | 0.1866 | 0.127 | 67.009 | 53.336 |
115 | 115 | 116 | 0.3732 | 0.246 | 162.07 | 90.321 |
116 | 116 | 117 | 0.405 | 0.367 | 48.785 | 29.156 |
117 | 110 | 118 | 0.489 | 0.438 | 33.9 | 18.98 |
References
1. El-Fergany, A, Abdelaziz, AY. Multi-objective capacitor allocations in distribution networks using artificial bee colony algorithm. J Electr Eng Technol 2014;9:441–51. https://doi.org/10.5370/jeet.2014.9.2.441.Search in Google Scholar
2. Sirjani, R, Mohamed, A, Shareef, H. Optimal capacitor placement in a radial distribution system using harmony search algorithm. J Appl Sci 2010;10:2998–3006. https://doi.org/10.3923/jas.2010.2998.3006.Search in Google Scholar
3. Sarma, AK, Mahammad Rafi, K. Optimal selection of capacitors for radial distribution systems using plant growth simulation algorithm. Int J Adv Sci Technol 2011;30:43–54.Search in Google Scholar
4. Sundhararajan, S, Pahwa, A. Optimal selection of capacitors for radial distribution systems using a genetic algorithm. IEEE Trans Power Syst 1994;9:1499–507. https://doi.org/10.1109/59.336111.Search in Google Scholar
5. Danish, SMS, Shigenobu, R, Kinjo, M, Mandal, P, Krishna, N, Mohamed Hemeida, A, Senjyu, T. A real distribution network voltage regulation incorporating auto-tap-changer pole transformer multi-objective optimization. Appl Sci 2019;9:2813. https://doi.org/10.3390/app9142813.Search in Google Scholar
6. Swarup, KS. Genetic algorithm for optimal capacitor allocation in radial distribution systems. In: Proceedings of the 6th WSEAS international conference on evolutionary, Lisbon, Portugal; 2005:152–9 pp.Search in Google Scholar
7. Prakash, DB, Lakshminarayana, C. Optimal siting of capacitors in radial distribution network using whale optimization algorithm. Alexandria Eng J 2017;56:499–509. https://doi.org/10.1016/j.aej.2016.10.002.Search in Google Scholar
8. Su, C-T, Chang, C-F, Chiou, J-P. Optimal capacitor placement in distribution systems employing ant colony search algorithm. Electr Power Compon Syst 2005;33:931–46. https://doi.org/10.1080/15325000590909912.10.1080/15325000590909912Search in Google Scholar
9. Das, D. Optimal placement of capacitors in radial distribution system using a fuzzy-GA method. Int J Electr Power Energy Syst 2008;30:361–7. https://doi.org/10.1016/j.ijepes.2007.08.004.Search in Google Scholar
10. Chis, M, Salama, MMA, Jayaram, S. Capacitor placement in distribution systems using heuristic search strategies. IEE Proc Gener Transm Distrib 1997;144:225–30. https://doi.org/10.1049/ip-gtd:19970945.10.1049/ip-gtd:19970945Search in Google Scholar
11. Askarzadeh, A. Capacitor placement in distribution systems for power loss reduction and voltage improvement: a new methodology. IET Gener Transm Distrib 2016;10:3631–38. https://doi.org/10.1049/iet-gtd.2016.0419.Search in Google Scholar
12. El-Fergany, AA, Abdelaziz, AY. Artificial bee colony algorithm to allocate fixed and switched static shunt capacitors in radial distribution networks. Electr Power Compon Syst 2014;42: 427–38. https://doi.org/10.1080/15325008.2013.856965.Search in Google Scholar
13. El-Fergany, AA, Abdelaziz, AY. Capacitor allocations in radial distribution networks using cuckoo search algorithm. IET Gener Transm Distrib 2014;8:223–32. https://doi.org/10.1049/iet-gtd.2013.0290.Search in Google Scholar
14. El-Ela, AAA, El-Sehiemy, RA, Kinawy, A-M, Mouwafi, MT. Optimal capacitor placement in distribution systems for power loss reduction and voltage profile improvement. IET Gener Transm Distrib 2016;10:1209–21. https://doi.org/10.1049/iet-gtd.2015.0799.Search in Google Scholar
15. Magadum, RB, Kulkarni, DB. Performance enhancement of distribution network by optimal placement of multiple capacitors using FKBC. In: Progress in computing, analytics and networking, Singapore: Springer; 2020:591–602 pp.10.1007/978-981-15-2414-1_59Search in Google Scholar
16. El-Fergany, AA. Optimal capacitor allocations using evolutionary algorithms. IET Gener Transm Distrib 2013;7:593–601. https://doi.org/10.1049/iet-gtd.2012.0661.Search in Google Scholar
17. Sudabattula, SK. Hybrid approach to solve capacitor allocation problem in distribution system. J Gujarat Res Soc 2019;8: 778–85.Search in Google Scholar
18. Sadeghian, O, Oshnoei, A, Kheradmandi, M, Mohammadi-Ivatloo, B. Optimal placement of multi-period-based switched capacitor in radial distribution systems. Comput Electr Eng 2020;82:106549. https://doi.org/10.1016/j.compeleceng.2020.106549.Search in Google Scholar
19. Venkataramana, A, Carr, J, Ramshaw, RS. Optimal reactive power allocation. IEEE Trans Power Syst 1987;2:138–44. https://doi.org/10.1109/tpwrs.1987.4335088.Search in Google Scholar
20. Kamel, S, Selim, A, Jurado, F, Yu, J, Xie, K, Wu, T. Capacitor allocation in distribution systems using fuzzy loss sensitivity factor with sine cosine algorithm. In: 2019 IEEE innovative smart grid technologies-Asia (ISGT Asia); 2019:1276–81 pp.10.1109/ISGT-Asia.2019.8881794Search in Google Scholar
21. Xu, Y, Dong, ZY, Wong, KP, Liu, E, Yue, B. Optimal capacitor placement to distribution transformers for power loss reduction in radial distribution systems. IEEE Trans Power Syst 2013;28:4072–79. https://doi.org/10.1109/tpwrs.2013.2273502.Search in Google Scholar
22. Gnanasekaran, N, Chandramohan, S, Sathish Kumar, P, Mohamed Imran, A. Optimal placement of capacitors in radial distribution system using shark smell optimization algorithm. Ain Shams Eng J 2016;7:907–16. https://doi.org/10.1016/j.asej.2016.01.006.Search in Google Scholar
23. Ambriz-Perez, H, Acha, E, Fuerte-Esquivel, CR. Advanced SVC models for Newton–Raphson load flow and newton optimal power flow studies. IEEE Trans Power Syst 2000;15:129–36. https://doi.org/10.1109/59.852111.Search in Google Scholar
24. Teng, J-H. A direct approach for distribution system load flow solutions. IEEE Trans Power Deliv 2003;18:882–7.10.1109/TPWRD.2003.813818Search in Google Scholar
25. Danish, MSS. Voltage stability in electric power system: a practical introduction. Berlin, Germany: Logos Verlag Berlin GmbH; 2015.Search in Google Scholar
26. Chakravorty, M, Das, D. Voltage stability analysis of radial distribution networks. Int J Electr Power Energy Syst 2001;23:129–35. https://doi.org/10.1016/s0142-0615(00)00040-5.Search in Google Scholar
27. Prakash, K, Sydulu, M. Particle swarm optimization based capacitor placement on radial distribution systems. In: 2007 IEEE power engineering society general meeting, IEEE; 2007:1–5 pp.10.1109/PES.2007.386149Search in Google Scholar
28. Elmaouhab, A, Boudour, M, Gueddouche, R. New evolutionary technique for optimization shunt capacitors in distribution networks. J Electr Eng 2011;62:163–7. https://doi.org/10.2478/v10187-011-0027-x.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Review
- Power quality problem and key improvement technology for regional power grids
- Research Articles
- Machine learning roles in advancing the power network stability due to deployments of renewable energies and electric vehicles
- Analysis between graph-based and Power Transfer Distribution Factors (PTDF)-based model reduction methods in Electric Power Systems
- Experimental control of photovoltaic system using neuro – Kalman filter maximum power point tracking (MPPT) technique
- Data compression techniques for Phasor Measurement Unit (PMU) applications in smart transmission grid
- Influence of inter-turn short circuit on the performance of 10 kV, 1000 kW induction motor
- Detection of coherent groups using measured signals, in an inter-area mode, for creating controlled islands to protect the power system from blackout
- Multi-objective optimization of optimal capacitor allocation in radial distribution systems
- A novel approach of closeness centrality measure for voltage stability analysis in an electric power grid
- Dynamic Simulation of Eastern Regional Grid of India using Power System Simulator for Engineering PSS®E
- Optimal total harmonic distortion minimization in multilevel inverter using improved whale optimization algorithm
- A cost effective accumulator management system for electric vehicles
Articles in the same Issue
- Review
- Power quality problem and key improvement technology for regional power grids
- Research Articles
- Machine learning roles in advancing the power network stability due to deployments of renewable energies and electric vehicles
- Analysis between graph-based and Power Transfer Distribution Factors (PTDF)-based model reduction methods in Electric Power Systems
- Experimental control of photovoltaic system using neuro – Kalman filter maximum power point tracking (MPPT) technique
- Data compression techniques for Phasor Measurement Unit (PMU) applications in smart transmission grid
- Influence of inter-turn short circuit on the performance of 10 kV, 1000 kW induction motor
- Detection of coherent groups using measured signals, in an inter-area mode, for creating controlled islands to protect the power system from blackout
- Multi-objective optimization of optimal capacitor allocation in radial distribution systems
- A novel approach of closeness centrality measure for voltage stability analysis in an electric power grid
- Dynamic Simulation of Eastern Regional Grid of India using Power System Simulator for Engineering PSS®E
- Optimal total harmonic distortion minimization in multilevel inverter using improved whale optimization algorithm
- A cost effective accumulator management system for electric vehicles