Home Multi-objective optimization of optimal capacitor allocation in radial distribution systems
Article
Licensed
Unlicensed Requires Authentication

Multi-objective optimization of optimal capacitor allocation in radial distribution systems

  • Sayed Mir Shah Danish ORCID logo EMAIL logo , Mikaeel Ahmadi , Atsushi Yona , Tomonobu Senjyu , Narayanan Krishna ORCID logo and Hiroshi Takahashi
Published/Copyright: July 4, 2020

Abstract

The optimal size and location of the compensator in the distribution system play a significant role in minimizing the energy loss and the cost of reactive power compensation. This article introduces an efficient heuristic-based approach to assign static shunt capacitors along radial distribution networks using multi-objective optimization method. A new objective function different from literature is adapted to enhance the overall system voltage stability index, minimize power loss, and to achieve maximum net yearly savings. However, the capacitor sizes are assumed as discrete known variables, which are to be placed on the buses such that it reduces the losses of the distribution system to a minimum. Load sensitive factor (LSF) has been used to predict the most effective buses as the best place for installing compensator devices. IEEE 34-bus and 118-bus test distribution systems are utilized to validate and demonstrate the applicability of the proposed method. The simulation results obtained are compared with previous methods reported in the literature and found to be encouraging.


Corresponding author: Sayed Mir Shah Danish, Faculty of Engineering, University of the Ryukyus, 1 Senbaru Nishihara-cho, Nakagami, Okinawa, 903-0213, Japan, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix

See Tables 5 and 6.

Table 5:

IEEE-34 bus test system data.

Line NoFrom busTo busR (Ω)X (Ω)P (kW)Q (kVAr)
1120.1170.048230142.5
2230.10730.04400
3340.16450.0457230142.5
4450.14950.0415230142.5
5560.14950.041500
6670.31440.05400
7780.20960.036230142.5
8890.31440.054230142.5
99100.20960.03600
1010110.1310.0225230142.5
1111120.10480.01813784
123130.15720.0277245
1313140.20960.0367245
1414150.10480.0187245
1515160.05240.00913.57.5
166170.17940.0498230142.5
1717180.16450.0457230142.5
1818190.20790.0473230142.5
1919200.1890.043230142.5
2020210.1890.043230142.5
2121220.2620.045230142.5
2222230.2620.045230142.5
2323240.31440.054230142.5
2424250.20960.036230142.5
2525260.1310.0225230142.5
2626270.10480.01813785
277280.15720.0277548
2828290.15720.0277548
2929300.15720.0277548
3010310.15720.0275734.5
3131320.20960.0365734.5
3232330.15720.0275734.5
3333340.10480.0185734.5
Table 6:

IEEE-118 bus test system data.

Line noFrom busTo busR (Ω)X (Ω)P (kW)Q (kVAr)
1120.0360.01,296133.84101.14
2230.0330.01,18816.21411.292
3240.0450.016234.31521.845
4450.0150.05473.01663.602
5560.0150.054144.268.604
6670.0150.0125104.4761.725
7780.0180.01428.54711.503
8890.0210.06387.5651.073
92100.1660.1344198.2106.77
1010110.1120.0789146.875.995
1111120.1870.31326.0418.687
1212130.1420.151252.123.22
1313140.180.118141.9117.5
1414150.150.04521.8728.79
1515160.160.1833.3726.45
1616170.1570.17132.4325.23
1711180.2180.28520.23411.906
1818190.1180.185156.9478.523
1919200.160.196546.29351.4
2020210.120.189180.31164.2
2121220.120.078993.16754.594
2222231.410.72385.1839.65
2323240.2930.1348168.195.178
2424250.1330.104125.11150.22
2525260.1780.13416.0324.62
2626270.1780.13426.0324.62
274280.0150.0296594.56522.62
2828290.0120.0276120.6259.117
2929300.120.2766102.3899.554
3030310.210.243513.4318.5
3131320.120.054475.25456.14
3232330.1780.234151.43136.79
3333340.1780.234205.3883.302
3434350.1540.162131.693.082
3535360.1870.261448.4369.79
3636370.1330.099440.52321.64
3737380.330.194112.5455.134
3838390.310.19453.96338.998
3939400.130.194393.05342.6
4040410.280.15326.74278.56
4141421.180.85536.26240.24
4242430.420.243676.24766.562
4329440.270.097253.5239.76
4444450.3390.122140.32831.964
4545460.270.177939.65320.758
4646470.210.138366.19542.361
4747480.120.078973.90451.653
4848490.150.0987114.7757.965
4949500.150.0987918.371205.1
5050510.240.1581210.3146.66
5151520.120.078966.6856.608
5229530.4050.145842.20740.184
5353540.4050.1458433.74283.41
5454550.3910.14162.126.86
5555560.4060.146192.4688.38
5656570.4060.146185.18855.436
5757580.7060.5461345.3332.4
5858590.3380.121822.516.83
5959600.3380.121880.55149.156
6030610.2070.074795.8690.758
6161620.2470.892262.9247.7
621630.0280.0418478.8463.74
6363640.1170.2016120.9452.006
6464650.2550.0918139.11100.34
6565660.210.0759391.78193.5
6666670.3830.13827.74126.713
6767680.5040.330352.81425.257
6868690.4060.146166.8938.713
6969700.9620.761467.5395.14
7070710.1650.06594.85239.74
7171720.3030.1092132.584.363
7272730.3030.109252.69922.482
7373740.2060.144869.79614.775
7474750.2330.08431.34929.817
7575760.5910.1773192.39122.43
7676770.1260.045365.7545.37
7764780.5590.3687238.15223.22
7878790.1860.1227294.55162.47
7979800.1860.1227485.57437.92
8080810.260.139243.53183.03
8181820.1540.148243.53183.03
8282830.230.128134.25119.29
8383840.2520.10622.7127.96
8484850.180.14849.51326.515
8579860.160.182383.78257.16
8686870.20.2349.6420.6
8787880.160.39322.47311.806
8865890.6690.241262.9342.96
8989900.2660.122730.6734.93
9090910.2660.122762.5366.79
9191920.2660.1227114.5781.748
9292930.2660.122781.29266.526
9393940.2330.11531.73315.96
9494950.4960.13833.3260.48
9591960.1960.18531.28224.85
9696970.1960.18507.03367.42
9797980.18660.12226.3911.7
9898990.07460.31845.9930.392
9911000.06250.0265100.6647.572
1001001010.15010.234456.48350.3
1011011020.13470.0888522.56449.29
1021021030.23070.1203408.43168.46
1031031040.4470.1608141.48134.25
1041041050.16320.0588104.4366.024
1051051060.330.09996.79383.647
1061061070.1560.0561493.92419.34
1071071080.38190.1374225.38135.88
1081081090.16260.0585509.21387.21
1091091100.38190.1374188.5173.46
1101101110.24450.0879918.03898.55
1111111120.20880.0753305.08215.37
1121001130.23010.082854.3840.97
1131131140.61020.2196211.14192.9
1141141150.18660.12767.00953.336
1151151160.37320.246162.0790.321
1161161170.4050.36748.78529.156
1171101180.4890.43833.918.98

References

1. El-Fergany, A, Abdelaziz, AY. Multi-objective capacitor allocations in distribution networks using artificial bee colony algorithm. J Electr Eng Technol 2014;9:441–51. https://doi.org/10.5370/jeet.2014.9.2.441.Search in Google Scholar

2. Sirjani, R, Mohamed, A, Shareef, H. Optimal capacitor placement in a radial distribution system using harmony search algorithm. J Appl Sci 2010;10:2998–3006. https://doi.org/10.3923/jas.2010.2998.3006.Search in Google Scholar

3. Sarma, AK, Mahammad Rafi, K. Optimal selection of capacitors for radial distribution systems using plant growth simulation algorithm. Int J Adv Sci Technol 2011;30:43–54.Search in Google Scholar

4. Sundhararajan, S, Pahwa, A. Optimal selection of capacitors for radial distribution systems using a genetic algorithm. IEEE Trans Power Syst 1994;9:1499–507. https://doi.org/10.1109/59.336111.Search in Google Scholar

5. Danish, SMS, Shigenobu, R, Kinjo, M, Mandal, P, Krishna, N, Mohamed Hemeida, A, Senjyu, T. A real distribution network voltage regulation incorporating auto-tap-changer pole transformer multi-objective optimization. Appl Sci 2019;9:2813. https://doi.org/10.3390/app9142813.Search in Google Scholar

6. Swarup, KS. Genetic algorithm for optimal capacitor allocation in radial distribution systems. In: Proceedings of the 6th WSEAS international conference on evolutionary, Lisbon, Portugal; 2005:152–9 pp.Search in Google Scholar

7. Prakash, DB, Lakshminarayana, C. Optimal siting of capacitors in radial distribution network using whale optimization algorithm. Alexandria Eng J 2017;56:499–509. https://doi.org/10.1016/j.aej.2016.10.002.Search in Google Scholar

8. Su, C-T, Chang, C-F, Chiou, J-P. Optimal capacitor placement in distribution systems employing ant colony search algorithm. Electr Power Compon Syst 2005;33:931–46. https://doi.org/10.1080/15325000590909912.10.1080/15325000590909912Search in Google Scholar

9. Das, D. Optimal placement of capacitors in radial distribution system using a fuzzy-GA method. Int J Electr Power Energy Syst 2008;30:361–7. https://doi.org/10.1016/j.ijepes.2007.08.004.Search in Google Scholar

10. Chis, M, Salama, MMA, Jayaram, S. Capacitor placement in distribution systems using heuristic search strategies. IEE Proc Gener Transm Distrib 1997;144:225–30. https://doi.org/10.1049/ip-gtd:19970945.10.1049/ip-gtd:19970945Search in Google Scholar

11. Askarzadeh, A. Capacitor placement in distribution systems for power loss reduction and voltage improvement: a new methodology. IET Gener Transm Distrib 2016;10:3631–38. https://doi.org/10.1049/iet-gtd.2016.0419.Search in Google Scholar

12. El-Fergany, AA, Abdelaziz, AY. Artificial bee colony algorithm to allocate fixed and switched static shunt capacitors in radial distribution networks. Electr Power Compon Syst 2014;42: 427–38. https://doi.org/10.1080/15325008.2013.856965.Search in Google Scholar

13. El-Fergany, AA, Abdelaziz, AY. Capacitor allocations in radial distribution networks using cuckoo search algorithm. IET Gener Transm Distrib 2014;8:223–32. https://doi.org/10.1049/iet-gtd.2013.0290.Search in Google Scholar

14. El-Ela, AAA, El-Sehiemy, RA, Kinawy, A-M, Mouwafi, MT. Optimal capacitor placement in distribution systems for power loss reduction and voltage profile improvement. IET Gener Transm Distrib 2016;10:1209–21. https://doi.org/10.1049/iet-gtd.2015.0799.Search in Google Scholar

15. Magadum, RB, Kulkarni, DB. Performance enhancement of distribution network by optimal placement of multiple capacitors using FKBC. In: Progress in computing, analytics and networking, Singapore: Springer; 2020:591–602 pp.10.1007/978-981-15-2414-1_59Search in Google Scholar

16. El-Fergany, AA. Optimal capacitor allocations using evolutionary algorithms. IET Gener Transm Distrib 2013;7:593–601. https://doi.org/10.1049/iet-gtd.2012.0661.Search in Google Scholar

17. Sudabattula, SK. Hybrid approach to solve capacitor allocation problem in distribution system. J Gujarat Res Soc 2019;8: 778–85.Search in Google Scholar

18. Sadeghian, O, Oshnoei, A, Kheradmandi, M, Mohammadi-Ivatloo, B. Optimal placement of multi-period-based switched capacitor in radial distribution systems. Comput Electr Eng 2020;82:106549. https://doi.org/10.1016/j.compeleceng.2020.106549.Search in Google Scholar

19. Venkataramana, A, Carr, J, Ramshaw, RS. Optimal reactive power allocation. IEEE Trans Power Syst 1987;2:138–44. https://doi.org/10.1109/tpwrs.1987.4335088.Search in Google Scholar

20. Kamel, S, Selim, A, Jurado, F, Yu, J, Xie, K, Wu, T. Capacitor allocation in distribution systems using fuzzy loss sensitivity factor with sine cosine algorithm. In: 2019 IEEE innovative smart grid technologies-Asia (ISGT Asia); 2019:1276–81 pp.10.1109/ISGT-Asia.2019.8881794Search in Google Scholar

21. Xu, Y, Dong, ZY, Wong, KP, Liu, E, Yue, B. Optimal capacitor placement to distribution transformers for power loss reduction in radial distribution systems. IEEE Trans Power Syst 2013;28:4072–79. https://doi.org/10.1109/tpwrs.2013.2273502.Search in Google Scholar

22. Gnanasekaran, N, Chandramohan, S, Sathish Kumar, P, Mohamed Imran, A. Optimal placement of capacitors in radial distribution system using shark smell optimization algorithm. Ain Shams Eng J 2016;7:907–16. https://doi.org/10.1016/j.asej.2016.01.006.Search in Google Scholar

23. Ambriz-Perez, H, Acha, E, Fuerte-Esquivel, CR. Advanced SVC models for Newton–Raphson load flow and newton optimal power flow studies. IEEE Trans Power Syst 2000;15:129–36. https://doi.org/10.1109/59.852111.Search in Google Scholar

24. Teng, J-H. A direct approach for distribution system load flow solutions. IEEE Trans Power Deliv 2003;18:882–7.10.1109/TPWRD.2003.813818Search in Google Scholar

25. Danish, MSS. Voltage stability in electric power system: a practical introduction. Berlin, Germany: Logos Verlag Berlin GmbH; 2015.Search in Google Scholar

26. Chakravorty, M, Das, D. Voltage stability analysis of radial distribution networks. Int J Electr Power Energy Syst 2001;23:129–35. https://doi.org/10.1016/s0142-0615(00)00040-5.Search in Google Scholar

27. Prakash, K, Sydulu, M. Particle swarm optimization based capacitor placement on radial distribution systems. In: 2007 IEEE power engineering society general meeting, IEEE; 2007:1–5 pp.10.1109/PES.2007.386149Search in Google Scholar

28. Elmaouhab, A, Boudour, M, Gueddouche, R. New evolutionary technique for optimization shunt capacitors in distribution networks. J Electr Eng 2011;62:163–7. https://doi.org/10.2478/v10187-011-0027-x.Search in Google Scholar

Received: 2019-09-09
Accepted: 2020-05-25
Published Online: 2020-07-04

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijeeps-2019-0206/html
Scroll to top button