Startseite Interarea Power System Oscillations Damping via AI-based Referential Integrity Variable-Structure Control
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Interarea Power System Oscillations Damping via AI-based Referential Integrity Variable-Structure Control

  • M. A. Ebrahim EMAIL logo und H. S. Ramadan
Veröffentlicht/Copyright: 7. Oktober 2016

Abstract

The design of power system stabilizer (PSS) is load-dependent and needs continuous adjustment at each operating condition. This paper aims at introducing a robust non-fragile PSS for interconnected power systems. The proposed controller has the capability of adaptively tuning online its rule-base through a variable-structure direct adaptive control algorithm in order to rigorously attain the desired objectives. The PSS controller acts on damping the electromechanical modes of oscillations not only through a wide range of operating conditions but also in presence of different disturbances. Using MATLABTM-Simulink, simulation results significantly verify that the proposed controller provides favorable performance and efficiently contributes towards enhancing the system dynamic behavior when applied to the four machines two-area power system that mimics the typical system behavior in actual operation. The interaction between the variable-structure adaptive fuzzy-based power system stabilizer (VS-AFPSS) and the existed typical ones inside the interconnected power systems has been explicitly discussed. Compared to other conventional controllers, VS-AFPSS enables better damping characteristics to both local and inter-area oscillation modes considering different operating conditions and sever disturbances.

Appendix A

A.1 The generating unit is modeled by seven first-order nonlinear differential equations

(33)dλddt=ed+raid+ω0ωλq,
(34)dλqdt=eq+raiq+ω0ωλd,
(35)dλfdt=efrfif,
(36)dλkddt=rkdikd,
(37)dλkqdt=rkqikq,
(38)dδdt=ω0ω1,
(39)dωdt=12HTmTe+kddδdt

Machine parameters in pu (The base power is 900 MVA):

ra=0.0025,Xd=1.8,Xd=0.3,Xd=0.25,Xq=1.7,Xq=0.55,Xq=0.25,Xq=0.2,τdo=8,τdo=0.03,τqo=0.4,τqo=0.05,Kd=0

A.2 The AVR parameters are

τr=0.02,ka=200,τa=0.001,ke=1,τe=0,kf=0,τf=0
Table 3:

Multi-machine system parameters.

Bus code p-qImpedance Zpq in puLine charging y′pq/2 in pu
1–20.02+j0.0600.0+j0.015
2–50.06+j0.0180.0+j0.020
5–60.08+j0.0240.0+j0.020
6–40.06+j0.0180.0+j0.020
4–30.02+j0.0600.0+j0.015

The loads in MVA at the power system buses:

L1=967+j100,L2=1767.

Nomenclature

ed

Direct-axis e.m.f. (pu)

eq

Quadrature-axis e.m.f. (pu)

ef

Field e.m.f. (pu)

fn

Nominal frequency (Hz)

H

Machine inertia (s)

id

Direct-axis current (pu)

if

Field current (pu)

ikd

Damper winding direct-axis current (pu)

ikq

Damper winding quadrature-axis current (pu)

iq

Quadrature-axis current (pu)

Ka

Amplifier gain

Kd

Damping factor

Ke

Exciter gain

Kf

Damping filter gain

Kr

Transducer gain

ra

Stator resistance (pu)

rf

Field winding resistance (pu)

rkd

Damper winding direct-axis resistance (pu)

rkq

Damper winding quadrature-axis resistance (pu)

τa

Amplifier time constant (s)

τdo

Direct-axis transient open-circuit time constant (s)

τdo

Direct-axis sub-transient open-circuit time constant (s)

τe

Exciter time constant (s)

Te

Electric torque (pu)

τf

Damping filter time constant (s)

Tm

Mechanical torque (pu)

τqo

Quadrature-axis transient open-circuit time constant (s)

τqo

Quadrature-axis sub-transient open-circuit time constant (s)

τr

Transducer time constant (s)

Xl

Leakage reactance (pu)

Xd

Direct-axis synchronous reactance (pu)

Xd

Direct-axis transient reactance (pu)

Xd

Direct-axis sub-transient reactance (pu)

Xq

Quadrature-axis synchronous reactance (pu)

Xq

Quadrature-axis transient reactance (pu)

Xq

Quadrature-axis sub-transient reactance (pu)

Upss

Power system stabilizer supplementary signal

Vref

Reference voltage (pu)

Vt

Machine terminal voltage (pu)

z

Damping ratio

δ

Power angle (rad)

λd

Direct-axis flux linkage (pu)

λf

Field flux (pu)

λkd

Damper winding direct-axis flux linkage (pu)

λkq

Damper winding quadrature-axis flux linkage (pu)

λq

Quadrature-axis flux linkage (pu)

ω

Machine speed (pu)

ω0

Synchronous speed (pu)

References

1. Chompoobutrgool Y, Vanfretti L. Identification of power system dominant inter-area oscillation paths. IEEE Trans Power Syst 28(3);August 2013:2798–807.10.1109/PESMG.2013.6672202Suche in Google Scholar

2. Chen Y, Fuller J, Diao R, Zhou N, Huang Z, Tuffner F. The influence of topology changes on inter-area oscillation modes and mode shapes. In IEEE Power and Energy Society General Meeting, pp. 1–7, 24–29 July 2011.10.1109/PES.2011.6039904Suche in Google Scholar

3. Pourbeik P, Cain T, Bottoms R. Application of small-signal stability tools and techniques to a large power system. In IEEE Power and Energy Society General Meeting, 26–30 July 2009.10.1109/PES.2009.5275895Suche in Google Scholar

4. Gou B, Weibiao W. Is the prediction of power system blackouts possible? In IEEE power and energy society general meeting-conversion and delivery of electrical energy in the 21st Century, 20–24 July 2008.Suche in Google Scholar

5. Anderson PM, Fouad AA. Power system control and stability. New York: Wiley, 2008.Suche in Google Scholar

6. Kundur P, Paserba J, Ajjarapu V, Andersson G, Bose A, Canizares C, et al. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans Power Syst 19(3);August 2004:1387–401.10.1109/TPWRS.2004.825981Suche in Google Scholar

7. Pal A, Thorp JS, Veda SS, Centeno VA. Applying a robust control technique to damp low frequency oscillations in the WECC. Int J Electr Power Energy Syst 44(1);2013:638–45.10.1016/j.ijepes.2012.08.022Suche in Google Scholar

8. Mendoza JE, Morales DA, López RA, López EA, Vannier JC, Coello CAC. Multi-objective location of automatic voltage regulators in a radial distribution network using a micro genetic algorithm. IEEE Trans Power Syst 22(1);2007:404–12.10.1109/TPWRS.2006.887963Suche in Google Scholar

9. Kundur P, Wang L. Small signal stability analysis: experiences, achievements, and challenges. In IEEE Proc. Power Con 2002, Vol. 1, pp. 6–12, 13–17 Oct. 2002.Suche in Google Scholar

10. Grigsby LL. Power system stability and control. Boca Raton, FL: CRC press, 2012.Suche in Google Scholar

11. Machowski J, Bialek J, Bumby J. Power system dynamics: stability and control. New York: John Wiley and Sons, 2011.Suche in Google Scholar

12. Kundur P. Power system stability and control. New York: Tata McGraw-Hill Education, 1994.Suche in Google Scholar

13. Yazdani L, Reza M. Damping inter-area oscillation by generation rescheduling based on wide-area measurement information. Electr Power Energy Syst 67(1);2015:138–51.10.1016/j.ijepes.2014.11.018Suche in Google Scholar

14. Ping Z, et al. Improved synergetic excitation control for transient stability enhancement and voltage regulation of power systems. Electr Power Energy Syst 68(1);2015:44–51.10.1016/j.ijepes.2014.12.056Suche in Google Scholar

15. Apkarian P, Adams RJ. Advanced gain-scheduling techniques for uncertain systems. IEEE Trans Control Syst Technol 6(1);1998:213–32.10.1109/ACC.1997.612082Suche in Google Scholar

16. Keel LH, Bhattacharyya SP. Robust, fragile or optimal. IEEE Trans Automatic Control 42(8);1997:1098–105.10.1109/ACC.1997.609747Suche in Google Scholar

17. Magdi M. Resilient control of uncertain dynamical systems. Berlin, Heidelberg: Springer-Verlag, 2004.Suche in Google Scholar

18. Soliman HM, Mahmoud MS. Resilient static output feedback power system stabilizer using PSO-LMI optimization. Int J Syst Contr Commun 5(1);2013:74–91.10.1504/IJSCC.2013.054147Suche in Google Scholar

19. Bhattacharyya SP, Chapellat H, Keel LH. Robust control: the parametric approach. Englewood Cliffs, NJ: Prentice-Hall, 1995.Suche in Google Scholar

20. Soliman M. Robust non-fragile power system stabilizer. Electr Power Energy Syst 64(1);2015:626–34.10.1109/ACC.2014.6859277Suche in Google Scholar

21. Soliman M. Parameterization of robust three-term power system stabilizers. Electr Power Syst Res 117(1);2014:172–84.10.1016/j.epsr.2014.08.013Suche in Google Scholar

22. Boukarim GE, Wang S, Chow JH, Taranto GN, Martins N. A comparison of classical, robust, and decentralized control designs for multiple power system stabilizers. IEEE Trans Power Syst 15(4);November 2000:1287–92.10.1109/PESS.2000.867494Suche in Google Scholar

23. Abido MA. Pole placement technique for PSS and TCSC-based stabilizer design using simulated annealing. Int J Electr Power Energy Syst 22(8);2000:543–54.10.1016/S0142-0615(00)00027-2Suche in Google Scholar

24. Zhang P, Coonick AH. Coordinated synthesis of PSS parameters in multi-machine power systems using the method of inequalities applied to genetic algorithms. IEEE Trans Power Syst 15(2);2000:811–16.10.1109/PESW.2000.850179Suche in Google Scholar

25. Rao PS, Sen I. Robust pole placement stabilizer design using linear matrix inequalities. IEEE Trans Power Syst 15(1);2000:313–19.10.1109/59.852138Suche in Google Scholar

26. Abdel-Magid YL, Abido MA. Robust coordinated design of excitation and TCSC-based stabilizers using genetic algorithms. Electr Power Syst Res 69(2);2004:129–41.10.1016/j.epsr.2003.06.009Suche in Google Scholar

27. Kohler EA, Malik OP, Taborda J. A prototype self-tuning adaptive power system stabilizer for damping of active power swings. In IEEE Power Engineering Society Summer Meeting, Vol. 1, pp. 122–126, July 2000.Suche in Google Scholar

28. Mostafa HE, et al. Design and allocation of power system stabilizers using the particle swarm optimization technique for an interconnected power system. Electri Power Energy Syst 34(1);2012:57–65.10.1016/j.ijepes.2011.09.005Suche in Google Scholar

29. Malik OP, El-Metwally KA. Fuzzy logic controller as power system stabilizer. In: M. El-Hawary, editor. Electric power applications of fuzzy logic. New York: IEEE Press, 1998.Suche in Google Scholar

30. El-Metwally KA, Malik OP. Application of fuzzy-logic stabilizers in a multi-machine environment. IEEE Proc Gener Transm Distrib 143(3);1996:263–8.10.1049/ip-gtd:19960193Suche in Google Scholar

31. Drainkov D, Hellendoorn H, Reinfrank M. An introduction to fuzzy control, 1st ed. Berlin, Germany: Springer, 1993.10.1007/978-3-662-11131-4Suche in Google Scholar

32. Kosko B. Fuzzy engineering, 1st ed. Englewood Cliffs, NJ: Prentice-Hall, 1997.Suche in Google Scholar

33. Guven K, Passino K. Avoiding exponential parameter growth in fuzzy systems. IEEE Trans Fuzzy Syst 9(1);2001:194–9.10.1109/ISIC.2000.882898Suche in Google Scholar

34. Elshafei L, El-Metwally KA. Power system stabilization via adaptive fuzzy-logic control, Proceedings of the 12th IEEE Int. Symposium on Intelligent Control, pp. 89–94, Istanbul, Turkey, 1997.Suche in Google Scholar

35. Wang L. Analysis and design of hierarchical fuzzy systems. IEEE Trans Fuzzy Syst 7;1999:617–24.10.1109/91.797984Suche in Google Scholar

36. Elshafei L, Shaltout AA, El-Metwally KA. A variable-structure adaptive fuzzy-logic stabilizer for single and multi-machine power systems. Control Eng Pract 13;2005:413–23.10.1016/j.conengprac.2004.03.017Suche in Google Scholar

37. Hussein T, Saad MS, Elshafei AL, Bahgat A. Damping inter-area modes of oscillation using an adaptive fuzzy power system stabilizer. Elect Power Syst Res 80(12);2010:1428–36.10.1109/MED.2008.4602029Suche in Google Scholar

38. Hsu L, Costa R. Analysis and design of I/O based variable structure adaptive control. IEEE Trans Automat Control 39(1);1994:4–21.10.1109/9.273335Suche in Google Scholar

39. Wang L. Stable adaptive fuzzy control of nonlinear systems. IEEE Trans Fuzzy Syst 1(2);1993:146–55.10.1109/CDC.1992.371074Suche in Google Scholar

40. Ebrahim MA, El-Metwally KA, Bendary FM, Mansour WM. Transient stability enhancement of a wind energy distributed generation system by using fuzzy logic stabilizers. Int J Wind Eng 36(6);2012:687–700.10.1260/0309-524X.36.6.687Suche in Google Scholar

Published Online: 2016-10-7
Published in Print: 2016-10-1

©2016 by De Gruyter

Heruntergeladen am 13.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijeeps-2016-0147/html
Button zum nach oben scrollen