Startseite Control of Grid Connected Photovoltaic System Using Three-Level T-Type Inverter
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Control of Grid Connected Photovoltaic System Using Three-Level T-Type Inverter

  • Abdelmalik Zorig EMAIL logo , Mohammed Belkeiri , Said Barkat und Abdelhamid Rabhi
Veröffentlicht/Copyright: 23. Juli 2016

Abstract

Three-level T-Type inverter (3LT2I) topology has numerous advantageous compared to three-level neutral-point-clamped (NPC) inverter. The main benefits of 3LT2I inverter are the efficiency, inverter cost, switching losses, and the quality of output voltage waveforms. In this paper, a photovoltaic distributed generation system based on dual-stage topology of DC-DC boost converter and 3LT2I is introduced. To that end, a decoupling control strategy of 3LT2I is proposed to control the current injected into the grid, reactive power compensation, and DC-link voltage. The resulting system is able to extract the maximum power from photovoltaic generator, to achieve sinusoidal grid currents, and to ensure reactive power compensation. The voltage-balancing control of two split DC capacitors of the 3LT2I is achieved using three-level space vector modulation with balancing strategy based on the effective use of the redundant switching states of the inverter voltage vectors. The proposed system performance is investigated at different operating conditions.

Appendix

System Parameters

Maximum Power of PVG 1.5 kW (at 1 kW/m2), 722 W (at 500 W/m2)

vs=220V, f=50Hz, Rs=0.3mΩ, Ls=2.6μH.

Cpv=63μF, Lpv=0.08H, Boost switching frequency fs=50kHz.

C1=C2=1mF, vdc=700V, Rl=8.4Ω, Ll=40mH.

Rf=0.02Ω, Lf=6.4mH, Inverter switching frequency: fs=5kHz.

References

1. Cha W, Kim K, Cho Y, Lee S, Kwon B. Evaluation and analysis of transformerless photovoltaic inverter topology for efficiency improvement and reduction of leakage current. IET Power Electron 2014;(82):255–67.10.1049/iet-pel.2014.0401Suche in Google Scholar

2. Akorede MF, Hizam H, Pouresmaeil E. Distributed energy resources and benefits to the environment. Renewable Sustainable Energy Rev 2010;14(2):724–34.10.1016/j.rser.2009.10.025Suche in Google Scholar

3. Blaabjerg F, Teodorescu R, Liserre M, Timbus AV. Overview of control and grid synchronization for distributed power generation systems. IEEE Trans Ind Electron 2006;53(5):1398–409.10.1109/TIE.2006.881997Suche in Google Scholar

4. Khadem SK, Basu M, Conlon MF. UPQC for power quality improvement in DG integrated smart grid network – a review. Int J Emerging Electr Power Syst 2012;13(1):3.10.1515/1553-779X.2878Suche in Google Scholar

5. Farag HE, El-Saadany EF, Seethapathy, R. The evolution for voltage and reactive power control in smart distribution systems. Int J Emerging Electr Power Syst 2012;13(1):Article 6.10.1515/1553-779X.2772Suche in Google Scholar

6. Bojoi LL, Roiu D, Tenconi A. Enhanced power quality control strategy for single phase inverters in distributed generation systems. IEEE Trans Power Electron 2011;26(3):798–806.10.1109/ISIE.2010.5637010Suche in Google Scholar

7. Mehta G, Singh SP, Patidar RD. Active, reactive and harmonic compensation control of grid interfaced fuel cell system. Int J Emerging Electr Power Syst 2012;13(4):Article 6.10.1515/1553-779X.2898Suche in Google Scholar

8. Lakshmanan SA, Rajpourhit BS, Jain A. Modeling and analysis of 3 phase VSI using SPWM technique for grid connected solar PV system. 2014 IEEE Students Conference on electrical, electronics and computer science (SCEECS), Bhopal, pp.1–6, Mar. 1–2, 2014.10.1109/SCEECS.2014.6804530Suche in Google Scholar

9. Mehta G, Singh SP, Patidar RD. Grid interconnection of distributed generation system with power quality improvement features. IEEE Ninth International Conference on Power Electronics and Drive Systems (PEDS), Dec. 5–8, 2011:329–33.10.1109/PEDS.2011.6147267Suche in Google Scholar

10. Hamrouni N, Jraidi M, Chérif A. New control strategy for 2-Stage grid-connected photovoltaic power system. Renewable Energy 2008;33(10):2212–21.10.1016/j.renene.2007.12.021Suche in Google Scholar

11. Kwon JM, Kwon BH, Nam KH. Three-phase photovoltaic system with three-level boosting MPPT control. IEEE Trans Power Electron 2008;23(5):2319–27.10.1109/TPEL.2008.2001906Suche in Google Scholar

12. Marei MI, El-Saadany EF, Salama MM. Flexible distributed generation: FDG. In: Proc. IEEE Power Eng. Soc Summer Meeting Chicago, vol.1, pp. 49–53, Jul. 25–25, 2002.Suche in Google Scholar

13. Pouresmaeil E. A multi-objective control strategy for grid connection of DG (distributed generation) resources. Energy 2010;35(12):5022–30.10.1016/j.energy.2010.08.019Suche in Google Scholar

14. Pouresmaeil E, Miguel-Espinar C, Massot-Campos M, Montesinos-Miracle D, Gomis Bellmunt O. A control technique for integration of DG units to the electrical networks. IEEE Trans Ind Electron 2013;60(7):2881–93.10.1109/TIE.2012.2209616Suche in Google Scholar

15. Mehrasa M, Pouresmaeil E, Akorede MF, Jørgensen BN, Catalão JP. Multilevel converter control approach of active power filter for harmonics elimination in electric grids. Energy 2015;84(1):722–31.10.1016/j.energy.2015.03.038Suche in Google Scholar

16. Pouresmaeil E, Montesinos-Miracle D, Gomis-Bellmunt O. Control scheme of three-level NPC inverter for integration of renewable energy resources into ac grid. IEEE Syst J 2012;6(2):242–53.10.1109/JSYST.2011.2162922Suche in Google Scholar

17. Pouresmaeil E, Gomis-Bellmunt O, Montesinos-Miracle D, Bergas-Jané J. Multilevel converters control for renewable energy integration to the power grid. Energy 2011;36(2):950–63.10.1016/j.energy.2010.12.014Suche in Google Scholar

18. Schweizer M, Kolar JW. Design and implementation of a highly efficient three-level T-Type converter for low-voltage application. IEEE Trans Power Electron 2013;28(2):1504–11.10.1109/TPEL.2012.2203151Suche in Google Scholar

19. Schweizer M, Lizama I, Friedli T, Kolar JW. Comparison of the chip area usage of 2-level and 3-level voltage source converter topologies. In Proc. IEEE 36th Annu. Conf. Ind. Electron. Soc, 2010:391–6.10.1109/IECON.2010.5674994Suche in Google Scholar

20. Li J, Huang AQ, Liang Z, Bhattacharya S. Analysis and design of active NPC (ANPC) inverters for fault-tolerant operation of high-power electrical drives. IEEE Trans Power Electron 2012;27(2):519–33.10.1109/TPEL.2011.2143430Suche in Google Scholar

21. Xiao H, Xie S. Transformerless split-inductor neutral-point-clamped three-level PV grid-connected inverter. IEEE Trans Power Electron 2012;27(4):1799–808.10.1109/ECCE.2010.5618214Suche in Google Scholar

22. Ewanchuk J, Salmon J, Vafakhah B. A five-/nine-level twelve-switch neutral-point-clamped inverter for high-speed electric drives. IEEE Trans Ind Appl 2011;47(5):2145–53.10.1109/ECCE.2010.5617878Suche in Google Scholar

23. Floricau D, Gateau G, Meynard TA. New multilevel flying–capacitor inverters with coupled–inductors. in Proc. of OPTIM 2012:764–9.10.1109/OPTIM.2012.6231882Suche in Google Scholar

24. Vafakhah B, Salmon J. Interleaved discontinuous space-vector PWM for a multilevel PWM VSI using a three-phase split-wound coupled inductor. IEEE Trans Ind Appl 2010;45(5):2015–24.10.1109/TIA.2010.2058834Suche in Google Scholar

25. Ewanchuk J, Salmon J, Knight A. Performance of a high-speed motor drive system using a novel multilevel inverter topology. IEEE Trans Ind Appl 2009;45(5):1706–14.10.1109/TIA.2009.2027530Suche in Google Scholar

26. Choi UM, Lee HH, Lee K-B. Simple neutral-point voltage control for three-level inverters using a 700 discontinuous pulse width modulation. IEEE Trans Energy Convers 2013;28(2):434–43.10.1109/TEC.2013.2257786Suche in Google Scholar

27. Celanovic N, Boroyevich D. A comprehensive study of neutral-point voltage balancing problem in three-level neutral-point-clamped voltage source PWM inverters. IEEE Trans Power Electron 2000;15(2):242–9.10.1109/APEC.1999.749733Suche in Google Scholar

28. Saeedifard M, Iravani R, Pou J. Analysis and control of DC-capacitor-voltage drift phenomenon of a passive front-end five-level converter. IEEE Trans Ind Electron, 2007;54(6):3255–66.10.1109/TIE.2007.905967Suche in Google Scholar

29. Hotait HA, Massoud AM, Finney SJ, Williams BW. Capacitor voltage balancing using redundant states of space vector modulation for five-level diode clamped inverters. IET Power Electron 2010;3(2):292–313.10.1049/iet-pel.2008.0327Suche in Google Scholar

30. Bouzidi M, Benaissa A, Barkat S. Hybrid direct power/current control using feedback linearization of three-level four-leg voltage source shunt active power filter. Electr Power Energy Syst 2014;61:629–46.10.1016/j.ijepes.2014.03.071Suche in Google Scholar

Published Online: 2016-7-23
Published in Print: 2016-8-1

©2016 by De Gruyter

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijeeps-2016-0067/html
Button zum nach oben scrollen