Startseite Enhanced photo-fenton-like degradation of Orange II using iron-rich natural clay and oxalic acid under UVA-Vis irradiation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Enhanced photo-fenton-like degradation of Orange II using iron-rich natural clay and oxalic acid under UVA-Vis irradiation

  • Zakaria Redouane-Salah EMAIL logo , Mouna Boulahbal , Fouzia Zehani , Juan A. Santaballa und Moises Canle
Veröffentlicht/Copyright: 2. Mai 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study investigates the degradation of Orange II (ORII), a model azo dye, in water using a natural clay (NC)/Oxalate/UVA-Vis system via a heterogeneous photo-Fenton-like (HPF-like) process. Iron-rich natural clay acts as a sustainable photocatalyst in the presence of oxalic acid (OA) under UVA-Vis irradiation (366 nm) at free pH and ∼25 °C. Characterization (SEM-EDS, TEM, XRF, BET) confirmed 26.3 % iron content and a 52.66 m2 g−1 surface area. ORII photodegradation (0.1 mM) in 1 g L−1 NC was enhanced by 5 mM oxalic acid, following first-order kinetics (t1/2 ≈ 20 min) with 90 % removal after 2 h. The combined effect of UVA-Vis irradiation and the surface formation of ferrioxalate complexes facilitated the photoinduced reduction of iron, leading to its dissolution and the generation of hydroxyl radicals (HO·) via a Fenton-like cycle, which were primarily responsible for ORII degradation. A synergistic effect was observed when H2O2 was introduced further enhancing HO· radical formation. The NC/OA/UVA-Vis system exhibited degradation behavior similar to that of goethite and proved to be a cost-effective, eco-friendly method for pretreating water contaminated with azo dyes.


Corresponding author: Zakaria Redouane-Salah, Faculty of Sciences and Technology, Université Amine Elokkal El Hadj Moussa Eg Akhamouk-Tamanghasset, Tamanrasset, Algeria; and Laboratoire des techniques innovantes de préservation de l’environnement (LTIPE), Constantine 1, Algeria, E-mail:

Acknowledgments

Z. REDOUANE-SALAH acknowledge the financial support of the Ministry of Higher Education and Scientific Research of Algeria (Projec tB00L01CU110120210001). This piece of research has also been partially financed by the React! Group at UDC through own internal resources and with financial support of the Spanish regional government of the Xunta de Galicia (GPC project ED431B 2020/52).

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors declare no conflicts of interest.

  6. Research funding: The research partially supported by the Ministry of Higher Education and Scientific Research of Algeria, it has also been partially financed by the React! Group at UDC.

  7. Data availability: All data are available within this article.

References

[1] J. Lei, et al.., “Photodegradation of orange I in the heterogeneous iron oxide–oxalate complex system under UVA irradiation,” J. Hazard. Mater., vol. B137, no. 2, pp. 1016–1024, 2006. https://doi.org/10.1016/j.jhazmat.2006.03.028.Suche in Google Scholar PubMed

[2] N. Jaafarzadeh, A. Takdastan, S. Jorfi, F. Ghanbari, M. Ahmadi, and G. Barzegar, “The performance study on ultrasonic/Fe3O4/H2O2for degradation of azo dye and real textile wastewater treatment,” J. Mol. Liq., vol. 256, pp. 462–470, 2018. https://doi.org/10.1016/j.molliq.2018.02.047.Suche in Google Scholar

[3] J. H. Ramirez, F. J. Maldonado-Hódar, A. F. Pérez-Cadenas, C. Moreno-Castilla, C. A. Costa, and L. M. Madeira, “Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts,” Appl. Catal. B: Environ., vol. 75, nos. 3–4, pp. 312–323, 2007. https://doi.org/10.1016/j.apcatb.2007.05.003.Suche in Google Scholar

[4] Y. Mameri, S. Belattar, N. Seraghni, N. Debbache, and T. Sehili, “Powdered activated carbon adsorbent for eosin Y removal: modeling of adsorption isotherm data, thermodynamic and kinetic studies,” Int. J. Chem. React. Eng., vol. 22, no. 2, pp. 189–197, 2023. https://doi.org/10.1515/ijcre-2023-0074.Suche in Google Scholar

[5] C. Santhosh, V. Velmurugan, G. Jacob, S. K. Jeong, A. N. Grace, and A. Bhatnagar, “Role of nanomaterials in water treatment applications: a review,” Chem. Eng. J., vol. 306, no. 1, pp. 1116–1137, 2016. https://doi.org/10.1016/j.cej.2016.08.053.Suche in Google Scholar

[6] S. Das, A. Samanta, and S. Jana, “Light-assisted synthesis of hierarchical flower-like MnO2 nanocomposites with solar light induced enhanced photocatalytic activity,” ACS Sustain. Chem. Eng., vol. 5, no. 11, pp. 9086–9094, 2017. https://doi.org/10.1021/acssuschemeng.7b02003.Suche in Google Scholar

[7] X. Zhang, J. Ma, C. Fan, M. Peng, and S. Komarneni, “Enhancement of photo-fenton-like degradation of orange II by MnO2/NiO nanocomposite with the synergistic effect from bisulfite,” J. Alloys Compd., vol. 785, pp. 343–349, 2019. https://doi.org/10.1016/j.jallcom.2019.01.197.Suche in Google Scholar

[8] S. Guo, G. Zhang, and J. Wang, “Photo-Fenton degradation of rhodamine B using Fe2O3–Kaolin as heterogeneous catalyst: characterization, process optimization and mechanism,” J. Colloid Interface Sci., vol. 433, pp. 1–8, 2014. https://doi.org/10.1016/j.jcis.2014.07.017.Suche in Google Scholar PubMed

[9] N. Pourshirband and A. Nezamzadeh-Ejhieh, “An efficient Z-scheme CdS/g-C3N4 nano catalyst in methyl orange photodegradation: focus on the scavenging agent and mechanism,” J. Mol. Liq., vol. 335, p. 116543, 2021. https://doi.org/10.1016/j.molliq.2021.116543.Suche in Google Scholar

[10] L. L. He, et al.., “A novel ZnWO4/MgWO4 n-n heterojunction with enhanced sonocatalytic performance for the removal of methylene blue: characterizations and sonocatalytic mechanism,” Surf. Interfaces, vol. 31, p. 101980, 2022. https://doi.org/10.1016/j.surfin.2022.101980.Suche in Google Scholar

[11] A. Hassani, S. Krishnan, J. Scaria, P. Eghbali, and P. V. Nidheesh, “Z-scheme photocatalysts for visible-light-driven pollutants degradation: a review on recent advancements,” Curr. Opin. Solid State Mater. Sci., vol. 25, no. 5, p. 100941, 2021. https://doi.org/10.1016/j.cossms.2021.100941.Suche in Google Scholar

[12] N. Pourshirband and A. Nezamzadeh-Ejhieh, “A Z-scheme AgI/BiOI binary nanophotocatalyst for the Eriochrome Black T photodegradation: a scavenging agents study,” Mater. Res. Bull., vol. 148, p. 111689, 2022. https://doi.org/10.1016/j.materresbull.2021.111689.Suche in Google Scholar

[13] N. Pourshirband and A. Nezamzadeh-Ejhieh, “An efficient Z-scheme CdS/g-C3N4 nano catalyst in methyl orange photodegradation: focus on the scavenging agent and mechanism,” J. Mol. Liq., vol. 335, p. 116543, 2021. https://doi.org/10.1016/j.molliq.2021.116543.Suche in Google Scholar

[14] Y. Zhang and W. Chu, “Bisphenol S degradation via persulfate activation under UVLED using mixed catalysts: synergistic effect of Cu–TiO2 and Zn–TiO2 for catalysis,” Chemosphere, vol. 286, p. 131797, 2022. https://doi.org/10.1016/j.chemosphere.2021.131797.Suche in Google Scholar PubMed

[15] X. Wang, et al.., “Fabrication Z-scheme heterojunction of Ag2O/ZnWO4 with enhanced sonocatalytic performances for meloxicam decomposition: increasing adsorption and generation of reactive species,” Chem. Eng. J., vol. 405, p. 126922, 2021. https://doi.org/10.1016/j.cej.2020.126922.Suche in Google Scholar

[16] A. Saravanan, et al.., “A detailed review on advanced oxidation process in treatment of wastewater: mechanism, challenges and future outlook,” Chemosphere, vol. 308, no. 3, p. 136524, 2022. https://doi.org/10.1016/j.chemosphere.2022.136524.Suche in Google Scholar PubMed

[17] D. S. Babu, V. Srivastava, P. V. Nidheesh, and M. S. Kumar, “Detoxification of water and wastewater by advanced oxidation processes,” Sci. Total Environ., vol. 696, p. 133961, 2019. https://doi.org/10.1016/j.scitotenv.2019.133961.Suche in Google Scholar

[18] Y. Sukhatskiy, M. Shepida, M. Sozanskyi, Z. Znak, and P. R. Gogate, “Periodate-based advanced oxidation processes for wastewater treatment: a review,” Sep. Purif. Technol., vol. 304, p. 122305, 2023. https://doi.org/10.1016/j.seppur.2022.122305.Suche in Google Scholar

[19] A. Surenjan, T. Pradeep, and L. Philip, “Application and performance evaluation of a cost-effective vis- LED based fluidized bed reactor for the treatment of emerging contaminants,” Chemosphere, vol. 228, pp. 629–639, 2019. https://doi.org/10.1016/j.chemosphere.2019.04.179.Suche in Google Scholar PubMed

[20] M. Priyadarshini, I. Das, M. M. Ghangreka, and L. Blaney, “Advanced oxidation processes: performance, advantages, and scale-up of emerging technologies,” J. Environ. Manage., vol. 316, p. 115295, 2022. https://doi.org/10.1016/j.jenvman.2022.115295.Suche in Google Scholar PubMed

[21] P. V. Nidheesh, C. Trellu, H. O. Vargas, E. Mousset, S. O. Ganiyu, and M. A. Oturan, “Electro-Fenton process in combination with other advanced oxidation processes: challenges and opportunities,” Curr. Opin. Electrochem., vol. 37, p. 101171, 2023. https://doi.org/10.1016/j.coelec.2022.101171.Suche in Google Scholar

[22] F. E. Titchou, et al.., “An overview on the elimination of organic contaminants from aqueous systems using electrochemical advanced oxidation processes,” J. Water Proc. Eng., vol. 41, p. 102040, 2021. https://doi.org/10.1016/j.jwpe.2021.102040.Suche in Google Scholar

[23] A. Gopinath, L. Pisharody, A. Popat, and P. V. Nidheesh, “Supported catalysts for heterogeneous electro-Fenton processes: recent trends and future directions,” Curr. Opin. Solid State Mater. Sci., vol. 26, no. 2, p. 100981, 2022. https://doi.org/10.1016/j.cossms.2022.100981.Suche in Google Scholar

[24] P. V. Nidheesh, et al.., “Recent advances in electro-Fenton process and its emerging applications,” Crit. Rev. Environ. Sci. Technol., vol. 53, no. 8, pp. 887–913, 2023. https://doi.org/10.1080/10643389.2022.2093074.Suche in Google Scholar

[25] A. Hassani, G. Çelikdağ, P. Eghbali, M. Sevim, S. Karaca, and Ö. Metin, “Heterogeneous sono-Fenton-like process using magnetic cobalt ferrite-reduced graphene oxide (CoFe2O4 rGO) nanocomposite for the removal of organic dyes from aqueous solution,” Ultrason. Sonochem., vol. 40, pp. 841–852, 2018. https://doi.org/10.1016/j.ultsonch.2017.08.026.Suche in Google Scholar PubMed

[26] A. M. Gholizadeh, M. Zarei, M. Ebratkhahan, and A. Hasanzadeh, “Phenazopyridine degradation by electro-Fenton process with magnetite nanoparticles-activated carbon cathode, artificial neural networks modeling,” J. Environ. Chem. Eng., vol. 9, p. 104999, 2021. https://doi.org/10.1016/j.jece.2020.104999.Suche in Google Scholar

[27] F. Ghanbari, A. Hassani, S. Wacławek, Z. W. G. Matyszczak, K. Y. A. Lin, and M. Dolatabadi, “Insights into paracetamol degradation in aqueous solutions by ultrasound-assisted heterogeneous electro-Fenton process: key operating parameters, mineralization and toxicity assessment,” Sep. Purif. Technol., vol. 266, p. 118533, 2021. https://doi.org/10.1016/j.seppur.2021.118533.Suche in Google Scholar

[28] M. A. Oturan, I. Sires, N. Oturan, S. Perocheau, J. L. Laborde, and S. Trevin, “Sonoelectro-Fenton process: a novel hybrid technique for the destruction of organic pollutants in water,” J. Electroanal. Chem., vol. 624, no. 1, pp. 329–332, 2008. https://doi.org/1.0.1016/j.jelechem.2008.08.005.10.1016/j.jelechem.2008.08.005Suche in Google Scholar

[29] R. Lin, Y. Li, T. Yong, W. Cao, J. Wu, and Y. Shen, “Synergistic effects of oxidation, coagulation and adsorption in the integrated fenton-based process for wastewater treatment: a review,” J. Environ. Manage., vol. 306, p. 114460, 2022. https://doi.org/10.1016/j.jenvman.2022.114460.Suche in Google Scholar PubMed

[30] Y. Chen, C. J. Miller, and T. D. Waite, “Heterogeneous fenton chemistry revisited: mechanistic insights from ferrihydrite-mediated oxidation of formate and OxalateEnviron,” Sci. Technol., vol. 55, no. 21, pp. 14414–14425, 2021. https://doi.org/10.1021/acs.est.1c00284.Suche in Google Scholar PubMed

[31] N. Thomas, D. D. Dionysiou, and S. C. Pillai, “Heterogeneous Fenton catalysts: a review of recent advances,” J. Hazard. Mater., vol. 404, pp. 124–082, 2021. https://doi.org/10.1016/j.jhazmat.2020.124082.Suche in Google Scholar PubMed PubMed Central

[32] J. P. Ribeiro, H. G. M. F. Gomes, L. Sarinho, C. C. Marques, and M. I. Nunes, “Synergies of metallic catalysts in the Fenton and photo-Fenton processes applied to the treatment of pulp bleaching wastewater,” Chem. Eng. Process.: Proc. Intensif., vol. 181, p. 109159, 2022. https://doi.org/10.1016/j.cep.2022.109159.Suche in Google Scholar

[33] R. Tanveer, A. Yasar, A. Tabinda, A. Ikhlaq, H. Nissar, and A. Nizami, “Comparison of ozonation, Fenton, and photo-Fenton processes for the treatment of textile dye-bath effluents integrated with electrocoagulation,” J. Water Process Eng., vol. 46, p. 102547, 2022. https://doi.org/10.1016/j.jwpe.2021.102547.Suche in Google Scholar

[34] L. M. Canle, M. I. Fernández, C. Martínez, and J. A. Santaballa, “(Re) Greening photochemistry: using light for degrading persistent organic pollutants,” Rev. Environ. Sci. Biotechnol., vol. 11, pp. 213–221, 2012. https://doi.org/10.1007/s11157-012-9275-x.Suche in Google Scholar

[35] M. Canle López, M. I. Fernández, C. Martínez, and J. A. Santaballa, “Photochemistry for pollution abatement,” Pure Appl. Chem., vol. 85, no. 7, pp. 1437–1449, 2013. https://doi.org/10.1351/PAC-CON-13-01-10.Suche in Google Scholar

[36] M. Blanco, A. Martinez, A. Marcaide, and E. Aranzabe, “A. Aranzabe heterogeneous fenton catalyst for the efficient removal of azo dyes in water,” Am. J. Anal. Chem., vol. 5, no. 8, pp. 490–499, 2014. https://doi.org/10.4236/ajac.2014.58058.Suche in Google Scholar

[37] EEC List of Council Directives 76/4647. European Economic Community, Brussels, 1982.Suche in Google Scholar

[38] W. Remache, et al.., “An efficient green photo-Fenton system for the degradation of organic pollutants. Kinetics of propranolol removal from different water matrices,” J. Water Process Eng., vol. 46, p. 102514, 2022. https://doi.org/10.1016/j.jwpe.2021.102514.Suche in Google Scholar

[39] V. Guimarães, A. R. Teixeira, M. S. Lucas, A. M. T. Silva, and J. A. Peres, “Pillared interlayered natural clays as heterogeneous photocatalysts for H2O2–assisted treatment of a winery wastewater,” Sep. Purif. Technol., vol. 228, p. 115768, 2019. https://doi.org/10.1016/j.seppur.2019.115768.Suche in Google Scholar

[40] M. M. Cheng, W. H. Ma, C. C. Chen, J. N. Yao, and J. C. Zhao, “Photocatalytic degradation of organic pollutants catalyzed by layered iron(II) bipyridine complex-clay hybrid under visible irradiation,” Appl. Catal. B-Environ., vol. 65, nos. 3–4, pp. 217–226, 2006. https://doi.org/10.1016/j.apcatb.2006.01.010.Suche in Google Scholar

[41] J. An, L. Zhu, Y. Zhang, and H. Tang, “Efficient visible light photo-fenton-like degradation of organic pollutants using in situ surface-modified BiFeO3 as a catalyst,” J. Environ. Sci., vol. 25, no. 6, pp. 1213–1225, 2013. https://doi.org/10.1016/S1001-0742(12)60172-7.Suche in Google Scholar PubMed

[42] G. Zhou, J. Guo, G. Zhou, X. Wan, and H. Shi, “Photodegradation of Orange II using waste paper sludge-derived heterogeneous catalyst in the presence of oxalate under ultraviolet light emitting diode irradiation,” J. Environ. Sci., vol. 47, pp. 63–70, 2016. https://doi.org/10.1016/j.jes.2015.11.030.Suche in Google Scholar PubMed

[43] C. Siffert and B. Sulzberger, “Light-induced dissolution of hematite in the presence of oxalate. A case study,” Langmuir, vol. 7, no. 8, pp. 1627–1634, 1991. https://doi.org/10.1021/la00056a014.Suche in Google Scholar

[44] D. Nansheng, W. Feng, L. Fan, and L. Zan, “Photodegradation of dyes in aqueous solutions containing Fe(lII)-oxalato complexes,” Chemosphere, vol. 35, no. 11, pp. 2697–2706, 1997. https://doi.org/10.1016/S0045-6535(97)00327-5.Suche in Google Scholar

[45] W. S. Hamd and J. Dutta, “Heterogeneous photo-Fenton reaction and its enhancement upon addition of chelating agents, Nanomaterials for the Detection and Removal of Wastewater Pollutants,” Micro and Nano Technol., pp. 303–330, 2020. https://doi.org/10.1016/B978-0-12-818489-9.00011-6.Suche in Google Scholar

[46] H. Dai, S. Xu, J. Chen, X. Miao, and J. Zhu, “Oxalate enhanced degradation of Orange II in heterogeneous UV-Fenton system catalyzed by Fe3O4@γ-Fe2O3 composite,” Chemosphere, vol. 199, pp. 147–153, 2018. https://doi.org/10.1016/j.chemosphere.2018.02.016.Suche in Google Scholar PubMed

[47] Q. Lan, F. Li, C. Liu, and X. Z. Li, “Heterogeneous photodegradation of pentachlorophenol with maghemite and oxalate under UV illumination,” Environ. Sci. Technol., vol. 42, no. 21, pp. 7918–7923, 2008. https://doi.org/10.1021/es801220n.Suche in Google Scholar PubMed

[48] B. M. Souza, M. W. C. Dezotti, R. A. R. Boaventura, and V. J. P. Vila, “Intensification of a solar photo-Fenton reaction at near neutral pH with ferrioxalate complexes: a case study on diclofenac removal from aqueous solutions,” Chem. Eng. J., vol. 256, pp. 448–457, 2014. https://doi.org/10.1016/j.cej.2014.06.111.Suche in Google Scholar

[49] Y. Wang, X. Lin, Z. Shao, D. Shan, G. Li, and A. Irini, “Comparison of Fenton, UV-Fenton and nano-Fe3O4 catalyzed UV-Fenton in degradation of phloroglucinol under neutral and alkaline conditions: role of complexation of Fe3+ with hydroxyl group in phloroglucinol,” Chem. Eng. J., vol. 313, pp. 938–945, 2017. https://doi.org/10.1016/j.cej.2016.10.133.Suche in Google Scholar

[50] K. Benhamouda, S. Belaidi, T. Sehili, and K. Djebbar, “Catalytic photodegradation of rhodamine B in the presence of natural iron oxide and oxalic acid under artificial and sunlight radiation,” Int. J. Chem. React. Eng., vol. 15, no. 2, pp. 1–9, 2017. https://doi.org/10.1515/ijcre-2016-0027.Suche in Google Scholar

[51] F. Gulshan, S. Yanagida, Y. Kameshima, T. Isobe, A. Nakajima, and K. Okada, “Various factors affecting photodecomposition of methylene blue by iron-oxides in an oxalate solution,” Water Res., vol. 44, no. 9, pp. 2876–2884, 2010. https://doi.org/10.1016/j.watres.2010.01.040.Suche in Google Scholar PubMed

[52] M. E. Balmer and B. Sulzberger, “Atrazine degradation in irradiated iron/oxalate systems: effects of pH and oxalate,” Environ. Sci. Technol., vol. 33, no. 14, pp. 2418–2424, 1999. https://doi.org/10.1021/es9808705.Suche in Google Scholar

[53] L. Fu, et al.., “Ferrous-oxalate-modified aramid nanofibers heterogeneous fenton catalyst for methylene blue degradation,” polymers, vol. 14, no. 17, p. 3491, 2022. https://doi.org/10.3390/polym14173491.Suche in Google Scholar PubMed PubMed Central

[54] N. Barrios-Bermúde, A. Cerpa-Naranjo, and M. L. Rojas-Cervantes, “Efficient methylene blue degradation by activation of peroxymonosulfate over Co(II) and/or Fe(II) impregnated montmorillonites,” Catalysts, vol. 14, no. 8, p. 479, 2024. https://doi.org/10.3390/catal14080479.Suche in Google Scholar

[55] Z. Redouane-Salah, M. A. Malouki, B. Khennaoui, J. A. Santaballa, and M. Canle, “Simulated Sunlight photodegradation of 2-mercaptobenzothiazole by heterogeneous photo-Fenton using a natural clay powder,” J. Environ. Chem. Eng., vol. 6, no. 2, pp. 1783–1793, 2018. https://doi.org/10.1016/j.jece.2018.02.011.Suche in Google Scholar

[56] W. Remache, S. Belaidi, L. Mammeri, H. Mechakra, T. Sehili, and K. Djebbar, “Photocatalytic degradation of 2,4-dichlorophenol using natural iron oxide and carboxylic acids under UV and sunlight irradiation: intermediates and degradation pathways,” Desalination and Water Treat., vol. 70, pp. 311–321, 2017, https://doi.org/10.5004/dwt.2017.20524.Suche in Google Scholar

[57] M. Boulahbal, et al.., “Removal of industrial azo dye crystal violet using natural clay: characterization,kinetic modeling, and optimization,” Chemosphere, vol. 306, p. 135516, 2022. https://doi.org/10.1016/j.chemosphere.2022.135516.Suche in Google Scholar PubMed

[58] B. B. Lazaro, “Halloysite and kaolinite: two clay minerals with geological and technological importance,” Rev. Real Acad. Ciencias. Zaragoza., vol. 70, pp. 1–33, 2015.Suche in Google Scholar

[59] D. Salman, et al.., “Synthesis, surface modification and characterization of magnetic Fe3O4@SiO2 core-shell nanoparticles,” J. Phys.: Conf. Ser., vol. 1773, p. 012039, 2021. https://doi.org/10.1088/1742-6596/1773/1/012039.Suche in Google Scholar

[60] F. Li, X. Li, C. Liu, and T. Liu, “Effect of alumina on photocatalytic activity of iron oxides for bisphenol A degradation,” J. Hazard. Mater., vol. 149, no. 1, pp. 199–207, 2007. https://doi.org/10.1016/j.jhazmat.2007.03.069.Suche in Google Scholar PubMed

[61] P. Eghbali, A. Hassani, B. Sündü, and Ö. Metin, “Strontium titanate nanocubes assembled on mesoporous graphitic carbon nitride (SrTiO3/mpg-C3N4): preparation, characterization and catalytic performance,” J. Mol. Liq., vol. 290, p. 111208, 2019. https://doi.org/10.1016/j.molliq.2019.111208.Suche in Google Scholar

[62] G. Li, N. Wang, B. Liu, and X. Zhang, “Decolorization of azo dye Orange II by ferrate(VI)–hypochlorite liquid mixture, potassium ferrate(VI) and potassium permanganate,” Desalination, vol. 249, no. 3, pp. 936–941, 2009. https://doi.org/10.1016/j.desal.2009.06.065.Suche in Google Scholar

[63] J. M. Peralta-Hernández, Y. Meas-Vong, F. J. Rodríguez, T. W. Chapman, M. I. Maldonado, and L. A. Godínez, “Comparison of hydrogen peroxide-based processes for treating dye-containing wastewater: decolorization and destruction of Orange II azo dye in dilute solution,” Dyes Pigm., vol. 76, no. 3, pp. 656–662, 2008. https://doi.org/10.1016/j.dyepig.2007.01.001.Suche in Google Scholar

[64] W. Feng and D. Nansheng, “Photochemistry of hydrolytic iron (III) species and photoinduced degradation of organiac compounds. A minireview,” Chemosphere, vol. 41, no. 8, pp. 1137–1147, 2000. https://doi.org/10.1016/S0045-6535(00)00024-2.Suche in Google Scholar PubMed

[65] M. I. Litter and M. A. Blesa, “Photodissolution of iron oxides. IV. A comparative study on the photodissolution of hematite, magnetite, and maghemite in EDTA media,” Can. J. Chem., vol. 70, no. 9, pp. 2502–2510, 1992. https://doi.org/10.1139/v92-316.Suche in Google Scholar

[66] E. M. Rodriguez, B. Nunez, G. Fernandez, and F. J. Beltran, “Effects of some carboxylic acids on the Fe(III)/UVA photocatalytic oxidation of muconic acid in water,” Appl. Catal. B: Environ., vol. 89, nos. 1–2, pp. 214–222, 2009. https://doi.org/10.1016/j.apcatb.2008.11.030.Suche in Google Scholar

[67] L. Wang, et al.., “Photoinduced degradation of 2,4-dichlorophenol in water: influence of various Fe(III) carboxylates,” Photochem. Photobiol. Sci., vol. 8, no. 7, pp. 1059–1065, 2009. https://doi.org/10.1039/B902607J.Suche in Google Scholar

[68] C. Xiao, et al.., “Enhancement of photo-Fenton catalytic activity with the assistance of oxalic acid on the kaolin–FeOOH system for the degradation of organic dyes,” RSC Adv., vol. 10, no. 32, pp. 18704–18714, 2020. https://doi.org/10.1039/d0ra03361h.Suche in Google Scholar PubMed PubMed Central

[69] C. Liu, F. Li, X. Li, G. Zhang, and Y. Kuang, “The effect of iron oxides and oxalate on the photodegradation of 2-mercaptobenzothiazole,” J. Mol. Catal. A: Chem., vol. 252, nos. 1–2, pp. 40–48, 2006. https://doi.org/10.1016/j.molcata.2006.02.036.Suche in Google Scholar

[70] D. Panias, M. Taxiarchou, I. Douni, I. Paspaliaris, and A. Kontopoulos, “Dissolution of hematite in acidic oxalate solutions: the effect of ferrous ions addition,” Hydrometallurgy, vol. 43, nos. 1–3, pp. 219–230, 1996. https://doi.org/10.1016/0304-386X(96)00004-7.Suche in Google Scholar

[71] M. Taxiarchou, D. Panias, I. Douni, I. Paspaliaris, and A. Kontopoulos, “Dissolution of hematite in acidic oxalate solutions,” Hydrometallurgy, vol. 44, no. 3, pp. 287–299, 1997. https://doi.org/10.1016/S0304-386X(96)00075-8.Suche in Google Scholar

[72] H. Ghazzaf, B. Nechchadi, A. Jouali, A. Salhi, M. El Krati, and S. Tahiri, “Synthesis of heterogeneous photo-Fenton catalyst from iron rust and its application to degradation of Acid Red 97 in aqueous medium,” J. Environ. Chem. Eng., vol. 10, no. 3, p. 107570, 2022. https://doi.org/10.1016/j.jece.2022.107570.Suche in Google Scholar

[73] F. Chai, K. Li, C. Song, and X. Guo, “Synthesis of magnetic porous Fe3O4/C/Cu2O composite as an excellent photo-Fenton catalyst under neutral condition,” J. Colloid Interface Sci., vol. 475, pp. 119–125, 2016. https://doi.org/10.1016/j.jcis.2016.04.047.Suche in Google Scholar PubMed

[74] H. Zhang, H. Fu, and D. Zhang, “Degradation of C.I. Acid Orange 7 by ultrasound enhanced heterogeneous Fenton-like process,” J. Hazard. Mater., vol. 172, nos. 2–3, pp. 654–660, 2009. https://doi.org/10.1016/j.jhazmat.2009.07.047.Suche in Google Scholar PubMed

[75] J. Chen and L. Zhu, “Heterogeneous UV-Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite,” Catal. Today, vol. 126, no. 3, pp. 463–470, 2007. https://doi.org/10.1016/j.cattod.2007.06.022.Suche in Google Scholar

[76] M. A. D. Leon, J. Castiglioni, J. Bussi, and M. Sergio, “Catalytic activity of an iron-pillared montmorillonitic clay mineral in heterogeneous photo-Fenton process,” Catal. Today, vol. 133, pp. 600–605, 2008. https://doi.org/10.1016/j.cattod.2007.12.130.Suche in Google Scholar

[77] J. Y. Feng, X. Hu, and P. L. Yue, “Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-Fenton discoloration and mineralization of Orange II,” Environ. Sci. Technol., vol. 38, no. 1, pp. 269–275, 2004. https://doi.org/10.1021/es034515c.Suche in Google Scholar PubMed

[78] X. Wang, C. Liu, X. Li, F. Li, and S. Zhou, “Photodegradation of 2-mercaptobenzothiazole in the γ-Fe2O3/oxalate suspension under UVA light irradiation,” J. Hazard. Mater., vol. 153, nos. 1–2, pp. 426–433, 2008. https://doi.org/10.1016/j.jhazmat.2007.08.072.Suche in Google Scholar PubMed

[79] Y. Zuo and J. Hoigne, “Formation of Hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes,” Environ. Sci. Technol., vol. 26, no. 5, pp. 1014–1022, 1992. https://doi.org/10.1021/es00029a022.Suche in Google Scholar

[80] B. C. Faust and R. G. Zepp, “Photochemistry of aqueous iron(III)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters,” Environ. Sci. Technol., vol. 27, no. 12, pp. 2517–2522, 1993. https://doi.org/10.1021/es00048a032.Suche in Google Scholar

[81] M. Jourshabani, J. A. Dominic, G. Achari, and Z. Shariatinia, “Synergetic photocatalytic ozonation using modified graphitic carbon nitride for treatment of emerging contaminants under UVC, UVA and visible irradiation,” Chem. Eng. Sci., vol. 209, p. 115181, 2019. https://doi.org/10.1016/j.ces.2019.115181.Suche in Google Scholar

[82] F. C. Ban, X. T. Zheng, and H. Y. Zhang, “Photo-assisted heterogeneous Fenton-like process for treatment of PNP wastewater,” J. Water, Sanit. Hyg. Dev., vol. 10, no. 1, pp. 136–145, 2020. https://doi.org/10.2166/washdev.2020.087.Suche in Google Scholar

[83] M. A. Rauf and S. S. Ashraf, “Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution,” Chem. Eng. J., vol. 151, nos. 1–3, pp. 10–18, 2009. https://doi.org/10.1016/j.cej.2009.02.026.Suche in Google Scholar

[84] W. Du, Y. Xu, and Y. Wang, “Photoinduced degradation of orange II on different iron(hydr)oxides in aqueous suspension: rate enhancement on addition of hydrogen peroxide, silver nitrate, and sodium fluoride,” Langmuir, vol. 24, no. 1, pp. 175–181, 2008. https://doi.org/10.1021/la7021165.Suche in Google Scholar PubMed

[85] M. Benacherine, N. Debbache, I. Ghoul, and Y. Mameri, “Heterogeneous photoinduced degradation of Amoxicillin by Goethite under artificial and natural irradiation,” J. Photochem. Photobiol. A: Chem., vol. 335, pp. 70–77, 2017. https://doi.org/10.1016/j.jphotochem.2016.11.008.Suche in Google Scholar

[86] H. Boucheloukh, W. Remache, F. Parrino, T. Sehili, and H. Mechakra, “The effect of natural iron oxide and oxalic acid on the photocatalytic degradation of Isoproturon: a kinetics and analytical study,” Photochem. Photobiol. Sci., vol. 16, no. 5, pp. 759–765, 2017. https://doi.org/10.1039/C6PP00441E.Suche in Google Scholar PubMed

[87] X. Guo and D. Wang, “Photo-Fenton degradation of methylene blue by synergistic action of oxalic acid and hydrogen peroxide with NiFe2O4 hollow nanospheres catalyst,” J. Environ. Chem. Eng., vol. 7, no. 1, pp. 102–814, 2019. https://doi.org/10.1016/j.jece.2018.102814.Suche in Google Scholar

Received: 2025-02-02
Accepted: 2025-04-18
Published Online: 2025-05-02

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2025-0022/html
Button zum nach oben scrollen