Home Carbon dioxide adsorption modeling to determine breakthrough curves in a fixed bed: isotherm and temperature effects
Article
Licensed
Unlicensed Requires Authentication

Carbon dioxide adsorption modeling to determine breakthrough curves in a fixed bed: isotherm and temperature effects

  • G. Chavez Esquivel ORCID logo , Mohammad S. Shafeeyan , Celestino O. Rodríguez Nava , Juan J. Cabello-Robles , Mayuric T. Hernández Botello and Julio Cesar García-Martínez EMAIL logo
Published/Copyright: March 3, 2025

Abstract

Carbon dioxide (CO2) is a major greenhouse gas produced by anthropogenic activities, such as industrial processes and energy consumption. This study focuses on CO2 adsorption, a widely used industrial method, specifically dynamic CO2 capture from the atmosphere using ammonia-modified granular activated carbon (OXA-GAC). The research integrates experimental investigations with mathematical modeling to optimize the adsorption process. A numerical solution for mass balance equations, formulated from partial differential equations (PDEs), was implemented using the method of lines (MOL). To simulate the CO2 breakthrough profile in the adsorption column, three kinetic models were employed: pseudo-first-order, pseudo-second-order, and Avrami. Among these, the Avrami model demonstrated the best fit, exhibiting the highest correlation factor with experimental kinetic data at 30 °C, 45 °C, and 60 °C. Furthermore, two equilibrium adsorption isotherms, Toth and Langmuir, were evaluated. For low CO2 concentrations, the Yoon-Nelson model outperformed the Thomas model, particularly at 30 °C and 45 °C across all C/C0 ratios. At 60 °C, the adsorption performance in the column was accurately represented by these models for C/C0 ratios below 0.7. This study contributes to the advancement of CO2 capture technologies by optimizing dynamic CO2 adsorption using OXA-GAC. It provides valuable insights into process optimization under varying temperature and concentration conditions, supporting the development of more efficient and sustainable carbon capture systems.


Corresponding author: Julio Cesar García-Martínez, Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas (ENCB), IPN, Prolongación de Carpio y Plan de Ayala S/N. Col. Santo Tomás, Miguel Hidalgo, 11340, Ciudad de México, México, E-mail:

Acknowledgments

J.C. García-Martínez thanks the support to the National School of Biological Sciences (ENCB) of the National Polytechnic Institute (IPN) with the project accepted in the Special Program for the Consolidation and Formation of Research Groups, whose title is: “Estudio teórico en Matlab para la adsorción de CO2 en un adsorbedor en continuo para disminuir los gases de efecto invernadero”. We thank the ENCB for the support received to carry out this research work and the student J.M. Jacinto Nava from social service who helped with data processing and programming.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors declare no conflicts of interest regarding this article.

  6. Research funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

  7. Data availability: Not applicable.

Nomenclature, dimensions

b C O 2

Langmuir constant for CO2, m3 mol−1

b N 2

Langmuir constant for N2, m3 mol−1

C

concentration, mmol L−1

C 0

inlet concentration, mmol L−1

C t

concentration at time t, mmol L−1

d P

particle diameter, m

D L

dispersion coefficient, m2 s−1

k A n

overall interfacial mass transfer coefficient at the L–S interphase, m s−1

k Th

model kinetic constant, mL mg−1 min−1

k YN

model kinetic constant, min−1

K T

equilibrium constant, atm−1

K T0

equilibrium constant, atm−1

L

adsorber length, m

L MTZ

length of the mass transfer zone, m

m

adsorbent mass, g

m T 0

Toth constant, dimensionless

P

pressure, MPa

q

amount adsorbed, mmoladsorbate gadsorbent −1

q e

maximum amount adsorbed, mmoladsorbate gadsorbent −1

q m0

initial amount adsorbed, mmoladsorbate kgadsorbent −1

q sat

amount adsorbed of Langmuir isotherm, mmoladsorbatekgadsorbent −1

Q

volumetric flow rate of the gas phase, mL min−1

Re = ρ g u ε b d p μ

Reynolds number

Sc = μ ρ g D m

Schmidt number

t

time, s

t 0.5

time taken for 50 % breakthrough of adsorbed molecule, s

t s

saturation time, s

t b

breakthrough time, s

T

reactor temperature, K

Q R T 0

constant Langmuir, dimensionless

u

superficial velocity, m s−1

z

axial dimension, m

Greek Letters

α

Toth constant, dimensionless

H

Reaction heat, kJ mol−1

ε B

void fraction, dimensionless

ν n

stoichiometric coefficient of the i-th component

ρ P

density of particle, kg m−3

μ G

dynamic viscosity of the gas phase, kg m−1 s−1

μ L

dynamic viscosity of the liquid phase, kg m−1 s−1

η

Toth constant, dimensionless

x

Langmuir constant, dimensionless

Abbreviations

CO2

Carbon dioxide

OXA-GAC

granular activated carbon ammonia-modified

PDE

Partial Differential Equation

MOL

method of lines

MOF

metal–organic frameworks

MTZ

mass transfer zone

References

[1] K. Saidi and A. Omri, “Reducing CO2 emissions in OECD countries: do renewable and nuclear energy matter?,” Prog. Nucl. Energy, vol. 126, p. 103425, 2020, https://doi.org/10.1016/j.pnucene.2020.103425.Search in Google Scholar

[2] T. Bossy, T. Gasser, K. Tanaka, and P. Ciais, “On the chances of staying below the 1.5 ºC warming target,” Cell Rep. Sustain., vol. 1, p. 100127, 2024, https://doi.org/10.1016/j.crsus.2024.100127.Search in Google Scholar

[3] J. L. Black, T. M. Davison, and I. Box, “Methane emissions from ruminants in Australia: mitigation potential and applicability of mitigation strategies,” Animals, vol. 11, no. 4, pp. 951–971, 2021, https://doi.org/10.3390/ani11040951.Search in Google Scholar PubMed PubMed Central

[4] A. Shahbazi and B. R. Nasab, “Carbon capture and storage (CCS) and its impacts on climate change and global warming,” J. Petrol Environ. Biotechnol., vol. 7, no. 4, p. 1000291, 2016, https://doi.org/10.4172/2157-7463.1000291.Search in Google Scholar

[5] L. Bonfim-Rocha, A. Batista Silva, S. Henrique Bernardo de Faria, V. M. Fernandes, and M. de Souza, “Production of sodium bicarbonate from CO2 reuse processes: a brief review,” Int. J. Chem. React. Eng., p. 20180318, 2020.10.1515/ijcre-2018-0318Search in Google Scholar

[6] S. Zhao, et al., “Status and progress of membrane contactors in post-combustion carbon capture: a state-of-the-art review of new developments,” J. Membr. Sci., vol. 511, p. 180, 2016, https://doi.org/10.1016/j.memsci.2016.03.051.Search in Google Scholar

[7] J. Bai, et al., “Thermodynamic investigation of hydrate-based CO2 capture from simulated flue gas with new mixed promoters,” Int. J. Chem. React. Eng., vol. 19, no. 1, pp. 75–85, 2021, https://doi.org/10.1515/ijcre-2020-0147.Search in Google Scholar

[8] N. Al-Janabi, et al., “Velocity variation effect in fixed bed columns: a case study of CO2 capture using porous solid adsorbents,” AIChE J., vol. 64, pp. 2189–2197, 2018, https://doi.org/10.1002/aic.16135.Search in Google Scholar

[9] M. M. Almoneef, H. Jedli, and M. Mbarek, “Experimental study of CO2 adsorption using activated carbon,” Mater. Res. Express, vol. 8, p. 065602, 2021, https://doi.org/10.1088/2053-1591/ac05fe.Search in Google Scholar

[10] M. S. Bhargava Reddy, D. Ponnamma, K. K. Sadasivuni, B. Kumar, and A. M. Abdullah, “Carbon dioxide adsorption based on porous materials,” Roy. Soc. Chem. Adv., vol. 11, pp. 12658–12681, 2021.10.1039/D0RA10902ASearch in Google Scholar

[11] F. Granados-Correa, E. Gutiérrez-Bonilla, M. Jiménez-Reyes, G. Roa-Morales, and P. Balderas-Hernández, “CO2 adsorption behavior of a highly-microporous KOH-activated carbon obtained from rice husk waste: kinetic and equilibrium studies,” Int. J. Chem. React. Eng., vol. 22, no. 2, pp. 181–187, 2024, https://doi.org/10.1515/ijcre-2023-0052.Search in Google Scholar

[12] M. S. Shafeeyan, W. M. A. W. Daud, A. Houshmand, and A. Arami-Niya, “Ammonia modification of activated carbon to enhance carbon dioxide adsorption: effect of pre-oxidation,” Appl. Surf. Sci., vol. 257, no. 9, pp. 3936–3942, 2011, https://doi.org/10.1016/j.apsusc.2010.11.127.Search in Google Scholar

[13] M. S. Shafeeyan, W. M. A. Wan Daud, A. Shamiri, and N. Aghamohammadi, “Modeling of carbon dioxide adsorption onto ammonia-modified activated carbon: kinetic analysis and breakthrough behavior,” Energy Fuel., vol. 29, no. 10, pp. 6565–6577, 2015.10.1021/acs.energyfuels.5b00653Search in Google Scholar

[14] J. Godinb, W. Liua, S. Rena, and Ch. Ch. Xu, “Advances in recovery and utilization of carbon dioxide: a brief review,” J. Environ. Chem. Eng., vol. 9, p. 105644, 2021, https://doi.org/10.1016/j.jece.2021.105644.Search in Google Scholar

[15] R. L. Siegelman, E. J. Kim, and J. R. Long, “Porous materials for carbon dioxide separations,” Nat. Mater., vol. 20, pp. 1060–1072, 2021, https://doi.org/10.1038/s41563-021-01054-8.Search in Google Scholar PubMed

[16] R. Maniarasu, S. K. Rathore, and S. Murugan, “A review on materials and processes for carbon dioxide separation and capture,” Energy Environ., vol. 34, no. 1, pp. 3–57, 2023, https://doi.org/10.1177/0958305x211050984.Search in Google Scholar

[17] M. Pardakhti, et al., “Trends in solid adsorbent materials development for CO2 capture,” ACS Appl. Mater. Interfaces, vol. 11, pp. 34533–34559, 2019, https://doi.org/10.1021/acsami.9b08487.Search in Google Scholar PubMed

[18] R. Sabouni, H. Kazemian, and S. Rohani, “Mathematical modelling and experimental breakthrough curves of carbon dioxide adsorption on metal organic framework CPM-5,” Environ. Sci. Technol., vol. 47, pp. 9372–9380, 2013, https://doi.org/10.1021/es401276r.Search in Google Scholar PubMed

[19] L. Zhang, et al., “Numerical simulation of CO2 adsorption on K-based sorbent,” Energy Fuel., vol. 30, pp. 4283–4291, 2016, https://doi.org/10.1021/acs.energyfuels.5b02588.Search in Google Scholar

[20] M. S. Shafeeyan, W. M. A. Wan Daud, and A. Shamiri, “A review of mathematical modelling of fixed bed columns for carbon dioxide adsorption,” Chem. Eng. Res. Des., vol. 92, pp. 961–988, 2014, https://doi.org/10.1016/j.cherd.2013.08.018.Search in Google Scholar

[21] M. Nedoma, M. Stafb, and J. Hrdlička, “Experimental and simulation study of CO2 breakthrough curves in a fixed-bed adsorption process,” Acta Polytechnia, vol. 62, no. 3, pp. 370–385, 2022, https://doi.org/10.14311/ap.2022.62.0370.Search in Google Scholar

[22] M. Tlili, G. Grévillot, A. Latifi, and C. Valliéres, “Electrical swing adsorption using new mixed matrix adsorbents for CO2 capture and recovery: experiments and modeling,” Ind. Eng. Chem. Res., vol. 51, pp. 15729–15737, 2012, https://doi.org/10.1021/ie3016818.Search in Google Scholar

[23] N. S. Wilkins, A. Rajendran, and S. Farooq, “Dynamic column breakthrough experiments for measurement of adsorption equilibrium and kinetics,” Adsorption, vol. 27, pp. 397–422, 2021, https://doi.org/10.1007/s10450-020-00269-6.Search in Google Scholar

[24] M. Auta and B. H. Hameed, “Adsorption of carbon dioxide by diethanolamine activated alumina beads in a fixed bed,” Chem. Eng. J., vol. 253, pp. 350–355, 2014, https://doi.org/10.1016/j.cej.2014.05.018.Search in Google Scholar

[25] J. A. Mason, K. Sumida, Z. R. Herm, R. Krishna, and J. R. Long, “Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption,” Energy Environ. Sci., vol. 4, no. 8, pp. 3030–3040, 2011, https://doi.org/10.1039/c1ee01720a.Search in Google Scholar

[26] F. N. Ridha, V. Manovic, A. Macchi, and E. J. Anthony, “CO2 capture at ambient temperature in a fixed bed with CaO-based sorbents,” Appl. Energy, vol. 140, pp. 297–303, 2015, https://doi.org/10.1016/j.apenergy.2014.11.030.Search in Google Scholar

[27] E. R. Monazam, J. Spenik, and L. J. Shadle, “Fluid bed adsorption of carbon dioxide on immobilized polyethylenimine (PEI): kinetic analysis and breakthrough behavior,” Chem. Eng. J., vol. 223, pp. 795–805, 2013, https://doi.org/10.1016/j.cej.2013.02.041.Search in Google Scholar

[28] T. L. P. Dantas, et al., “Adsorption of carbon dioxide onto activated carbon and nitrogen-enriched activated carbon: surface changes, equilibrium, and modelling of fixed-bed adsorption,” Separ. Sci. Technol., vol. 45, no. 1, pp. 73–84, 2009, https://doi.org/10.1080/01496390903401762.Search in Google Scholar

[29] W. E. Schiesser and G. W. Griffiths, A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab, Cambridge University Press, 2009.10.1017/CBO9780511576270Search in Google Scholar

[30] P. Li and F. H. Tezel, “Pure and binary adsorption equilibria of carbon dioxide and nitrogen on silicalite,” J. Chem. Eng. Data, vol. 53, no. 11, pp. 2479–2487, 2008, https://doi.org/10.1021/je700183y.Search in Google Scholar

[31] R. F. P. M. Moreira, J. L. Soares, G. L. Casarin, and A. E. Rodrigues, “Adsorption of CO2 on hydrotalcite-like compounds in a fixed bed,” Sep. Sci. Technol., vol. 41, no. 2, pp. 341–357, 2007, https://doi.org/10.1080/01496390500496827.Search in Google Scholar

[32] K. Karimi, J. A. C. Silva, C. N. d. P. Goncalves, J. L. Díaz de Tuesta, A. E. Rodrigues, and H. T. Gomes, “CO2 capture in chemically and thermally modified activated carbons using breakthrough measurements: experimental and modeling study,” Ind. Eng. Chem. Res., vol. 57, pp. 11154–11166, 2018.10.1021/acs.iecr.8b00953Search in Google Scholar

[33] K. N. Pai, V. Prasad, and A. Rajendran, “Practically achievable process performance limits for pressure-vacuum swing adsorption based post-combustion CO2 capture,” ACS Sustain. Chem. Eng., vol. 9, no. 10, pp. 3838–3849, 2021, https://doi.org/10.1021/acssuschemeng.0c08933.Search in Google Scholar

[34] H. C. Thomas, “Chromatography: a problem in kinetics,” Ann. N. Y. Acad. Sci., vol. 49, no. 1, p. 161e182, 1948.10.1111/j.1749-6632.1948.tb35248.xSearch in Google Scholar PubMed

[35] Z. Aksu and F. Gonen, “Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves,” Process Biochem., vol. 39, no. 5, p. 599e613, 2004, https://doi.org/10.1016/s0032-9592(03)00132-8.Search in Google Scholar

[36] Y. H. Yoon and J. H. Nelson, “Application of gas-adsorption kinetics. 1. A theoretical model for respirator cartridge service life,” Am. Ind. Hyg. Assoc. J., vol. 45, p. 509e516, 1984.10.1080/15298668491400197Search in Google Scholar PubMed

[37] W. T. Tsai, C. Y. Chang, C. Y. Ho, and L. Y. Chen, “Adsorption properties and breakthrough model of 1,1-dichloro-1-fluoroethane on activated carbons,” J. Hazard. Mater., vol. B69, no. 1, pp. 53–66, 1999, https://doi.org/10.1016/s0304-3894(99)00058-8.Search in Google Scholar PubMed

[38] M. K. A. Mesfer, M. Danish, M. I. Khan, I. H. Ali, M. Hasan, and A. E. Jery, “Continuous fixed bed CO2 adsorption: breakthrough, column efficiency, mass transfer zone,” Process, vol. 8, pp. 1233–1248, 2020, https://doi.org/10.3390/pr8101233.Search in Google Scholar

[39] J. Tang, Y. Zhou, W. Su, X. Liu, and Y. Sun, “Synthesis of zeolite SSZ-13 for N2 and CO2 separation,” Adsorpt. Sci. Technol., vol. 31, no. 6, pp. 477–571, 2013.10.1260/0263-6174.31.6.549Search in Google Scholar

[40] K. O. Yoro, M. Singo, J. L. Mulopo, and M. O. Daramola, “Modelling and experimental study of the CO2 adsorption behaviour of polyaspartamide as an adsorbent during post-combustion CO2 capture,” Energy Procedia, vol. 114, pp. 1643–1664, 2017, https://doi.org/10.1016/j.egypro.2017.03.1294.Search in Google Scholar

[41] T. N. Ang, B. R. Young, M. Taylor, R. Burrell, M. K. Aroua, and S. Baroutian, “Breakthrough analysis of continuous fixed-bed adsorption of sevoflurane using activated carbons,” Chemosphere, vol. 239, p. 124839, 2020, https://doi.org/10.1016/j.chemosphere.2019.124839.Search in Google Scholar PubMed

[42] J. López-Cervantes, D. I. Sánchez-Machado, R. G. Sánchez-Duarte, and Ma. A. Correa-Murrieta, “Study of a fixed-bed column in the adsorption of an azo dye from an aqueous medium using a chitosan glutaraldehyde biosorbent,” Adsorpt. Sci. Technol., vol. 36, nos. 1–2, pp. 215–232, 2018, https://doi.org/10.1177/0263617416688021.Search in Google Scholar

[43] H. Han, Y. Wang, W. Zou, Y. Wang, and J. Shi, “Comparison of linear and nonlinear analysis in estimating the Thomas model parameters for methylene blue adsorption onto natural zeolite in fixed-bed column,” J. Hazard. Mater., vol. 145, pp. 331–335, 2007, https://doi.org/10.1016/j.jhazmat.2006.12.027.Search in Google Scholar PubMed

[44] J. S. Valencia Rios and G. C. Castellar Ortega, “Prediction of breakthrough curves for the removal of lead (II) in aqueous solution onto activated carbon in a packed column,” Rev. Fac. Ing. Univ. Antioquia, vol. 66, pp. 141–158, 2013.Search in Google Scholar

Received: 2024-06-08
Accepted: 2025-02-14
Published Online: 2025-03-03

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2024-0117/pdf
Scroll to top button