Startseite Fabrication and characterization of extracted microsized chitosan embedded PVDF membrane for wastewater treatment
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fabrication and characterization of extracted microsized chitosan embedded PVDF membrane for wastewater treatment

  • Deepshikha Datta , Nitin Kumar , Priyasi Bhangar , Sudipta K. Das , Ravindranadh Koutavarapu und Bimal Das ORCID logo EMAIL logo
Veröffentlicht/Copyright: 5. November 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Critical water crisis due to overpopulation, industrialization and urbanization has resulted to the shortfall of providing safe drinking water to one billion people in the world. This work intends to fabricate modified hydrophobic polyvinylidene fluoride (PVDF) membrane by hydrophilic chitosan extracted from waste fish scales for wastewater treatment. Chitosan was blended with PVDF in N-methyl-2-pyrrolidone solution by solution casting method. Three different concentrations of 1, 3 and 5 wt% of chitosan were taken. The morphological, spectral and thermal analysis of the produced films were elaborately studied. The contact angle decreased with the increase of chitosan content from 82.64° to 60.97°. The tensile strength decreases from 1.11 to 0.38 MPa and Young’s modulus decreased from 12.08 to 7.4 MPa with increase in chitosan content in the film from 1 to 3 %. The performance of microparticle embedded membrane was compared with the pristine PVDF membrane, and it was affirmed that the microsized-chitosan embedded PVDF membrane manifests a broad promising application perspective towards wastewater treatment owing to its excellent water flux (76 L m−2 h−1) as well as antibacterial properties.


Corresponding author: Bimal Das, Department of Chemical Engineering, National Institute of Technology, Durgapur, 713209, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: All other authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

[1] D. Baus, Overpopulation and the Impact on the Environment. City University of New York, The Graduate Center, 2017.Suche in Google Scholar

[2] H. George, P. Koohafkan, and Y. Niino, The State of the World’s Land and Water Resources for Food and Agriculture, Moscow, FAO and Ves’ Mir Publishing House, 2012.Suche in Google Scholar

[3] E. Obotey Ezugbe and S. Rathilal, “Membrane technologies in wastewater treatment: a review,” Membranes, vol. 10, no. 5, p. 89, 2020, https://doi.org/10.3390/membranes10050089.Suche in Google Scholar

[4] M. Samer, “Biological and chemical wastewater treatment processes,” Wastewater Treat. Eng., vol. 150, p. 212, 2015.Suche in Google Scholar

[5] J. Dhote, S. Ingole, and A. Chavhan, “Review on wastewater treatment technologies,” Int. J. Eng. Res. Technol, vol. 1, no. 05, pp. 01–10, 2012.Suche in Google Scholar

[6] N. H. Othman, et al.., “A review on the use of membrane technology systems in developing countries,” Membranes, vol. 12, no. 1, p. 30, 2021, https://doi.org/10.3390/membranes12010030.Suche in Google Scholar

[7] S. Sonawane, P. Thakur, S. H. Sonawane, and B. A. Bhanvase, “Nanomaterials for membrane synthesis: introduction, mechanism, and challenges for wastewater treatment,” in Handbook of Nanomaterials for Wastewater Treatment, Amsterdam, Netherlands, Elsevier, 2021, pp. 537–553.Suche in Google Scholar

[8] X. Xu, Y. Yang, T. Liu, and B. Chu, “Cost-effective polymer-based membranes for drinking water purification,” Giant, vol. 10, 2022, Art. no. 100099, https://doi.org/10.1016/j.giant.2022.100099.Suche in Google Scholar

[9] R. Dallaev, T. Pisarenko, D. Sobola, F. Orudzhev, S. Ramazanov, and T. Trčka, “Brief review of PVDF properties and applications potential,” Polymers, vol. 14, no. 22, p. 4793, 2022, https://doi.org/10.3390/polym14224793.Suche in Google Scholar

[10] L. F. Fang, J. L. Shi, H. Li, B. K. Zhu, and L. P. Zhu, “Construction of porous coating layer and electrochemical performances of the corresponding modified polyethylene separators for lithium ion batteries,” J. Appl. Polym. Sci., vol. 131, no. 21, 2014, https://doi.org/10.1002/app.41036.Suche in Google Scholar

[11] C. N. B. Elizalde, S. Al-Gharabli, J. Kujawa, M. Mavukkandy, S. W. Hasan, and H. A. Arafat, “Fabrication of blend polyvinylidene fluoride/chitosan membranes for enhanced flux and fouling resistance,” Sep. Purif. Technol., vol. 190, pp. 68–76, 2018, https://doi.org/10.1016/j.seppur.2017.08.053.Suche in Google Scholar

[12] E. Cohen and E. Poverenov, “Hydrophilic chitosan derivatives: synthesis and applications,” Chem. Eur. J., vol. 28, no. 67, 2022, Art. no. e202202156, https://doi.org/10.1002/chem.202202156.Suche in Google Scholar

[13] A. Lee, J. W. Elam, and S. B. Darling, “Membrane materials for water purification: design, development, and application,” Environ. Sci. Water Res. Technol., vol. 2, pp. 17–42, 2016, https://doi.org/10.1039/c5ew00159e.Suche in Google Scholar

[14] S. Nagandran, P. S. Goh, A. F. Ismail, T. W. Wong, and W. R. Z. Binti Wan Dagang, “The recent progress in modification of polymeric membranes using organic macromolecules for water treatment,” Symmetry, vol. 12, no. 2, p. 239, 2020, https://doi.org/10.3390/sym12020239.Suche in Google Scholar

[15] N. I. Mat Nawi, et al.., “Development of hydrophilic PVDF membrane using vapour induced phase separation method for produced water treatment,” Membranes, vol. 10, no. 6, p. 121, 2020, https://doi.org/10.3390/membranes10060121.Suche in Google Scholar

[16] D. Datta, D. Pamanji, and B. Das, “Production and optimisation of biodegradable LDPE packaging films strengthened with inorganic filler through response surface methods using central composite design,” Indian Chem. Eng., pp. 1–17, 2023, https://doi.org/10.1080/00194506.2022.2162447.Suche in Google Scholar

[17] Z. S. Sheikholeslami, M. Imani, M. Atai, A. Nodehi, and H. Salimi-Kenari, “Purification assay to prepared ultrapure carboxymethyl-chitosan,” J. Macromol. Sci., Part A, vol. 54, no. 9, pp. 605–611, 2017, https://doi.org/10.1080/10601325.2017.1312438.Suche in Google Scholar

[18] F. Kaya, Ş. Taşar, and A. Özer, “Surface characterization of commercial chitosan with SEM and BET techniques,” Firat Univ. J. Exp. Comput. Eng., vol. 1, no. 2, pp. 43–48, 2022, https://doi.org/10.5505/fujece.2022.09797.Suche in Google Scholar

[19] C. M. Hristodor, N. Vrinceanu, A. Pui, O. Novac, V. E. Copcia, and E. Popovici, “Textural and morphological characterization of chitosan/bentonite nanocomposite,” Environ. Eng. Manag. J. (EEMJ), vol. 11, no. 3, 2012, https://doi.org/10.30638/eemj.2012.070.Suche in Google Scholar

[20] M. Tomaszewska, Preparation and properties of flat-sheet membranes from poly(vinylidene fluoride) for membrane distillation. Desalination, vol. 104, pp. 1–11, 1996, https://doi.org/10.1016/0011-9164(96)00020-3.Suche in Google Scholar

[21] N. Kusumawati, A. Wijiastuti, and A. Budi Santoso, “Manufacture of PVDF-kitosan composite membrane and its utilization in Batik industrial wastewater treatment,” Res. J. Pharmaceut. Biol. Chem. Sci., vol. 5, pp. 495–503, 2015.Suche in Google Scholar

[22] M. Ulaganathan, R. Nithya, and S. Rajendran. “Surface analysis studies on polymer electrolyte membranes using scanning electron microscope and atomic force microscope,” in Scanning Electron Microscopy, London, United Kingdom IntechOpen Limited, 2012.Suche in Google Scholar

[23] L. Marhaini and N. Rochyani, “Application of membran polyvinylidenefluoride (PVDF) synthesis blending TiO2-Serbuk Kelor (Moringa oleifera) seed on coal wastewater treatment,” Int. J. Environ. Chem., vol. 3, no. 1, pp. 1–6, 2019.Suche in Google Scholar

[24] M. Ahmadi Khoshooei, F. Fazlollahi, Y. Maham, A. Hassan, and P. Pereira-Almao, “A review on the application of differential scanning calorimetry (DSC) to petroleum products: wax crystallization study and structural analysis,” J. Therm. Anal. Calorim., vol. 138, pp. 3485–3510, 2019, https://doi.org/10.1007/s10973-019-08022-0.Suche in Google Scholar

[25] J. S. de, C. Campos, A. A. Ribeiro, and C. X. Cardoso, “Preparation and characterization of PVDF/CaCO3 composites,” Mater. Sci. Eng., B, vol. 136, p. 2007.Suche in Google Scholar

[26] M. N. Nguyen, P. Loulergue, N. Karpel, and B. Teychene, “Electron beam irradiation of polyvinylidene fluoride/polyvinylpyrrolidone ultrafiltration membrane in presence of Zwitterions molecules evaluation of filtration performances,” Radiat. Phys. Chem., vol. 159, pp. 101–110, 2019. https://doi.org/10.1016/j.radphyschem.2019.02.029.Suche in Google Scholar

[27] W. Li, H. Li, and Y. M. Zhang, “Preparation and investigation of PVDF/PMMA/TiO2 composite film,” J. Mater. Sci., vol. 44, pp. 2977–2984, 2009, https://doi.org/10.1007/s10853-009-3395-x.Suche in Google Scholar

[28] D. J. Miller, D. R. Dreyer, C. W. Bielawski, D. R. Paul, and B. D. Freeman, “Surface modification of water purification membranes,” Angew. Chem., Int. Ed., vol. 56, no. 17, pp. 4662–4711, 2017, https://doi.org/10.1002/anie.201601509.Suche in Google Scholar

[29] J. Jiang, L. Zhu, L. Zhu, H. Zhang, B. Zhu, and Y. Xu, “Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(n-vinyl pyrrolidone),” ACS Appl. Mater. Interfaces, vol. 5, pp. 12895–12904, 2013, https://doi.org/10.1021/am403405c.Suche in Google Scholar

[30] I. Gajic, et al.., “Antimicrobial susceptibility testing: a comprehensive review of currently used methods,” Antibiotics, vol. 11, no. 4, p. 427, 2022, https://doi.org/10.3390/antibiotics11040427.Suche in Google Scholar

[31] I. O. Saheed, W. Da Oh, and F. B. M. Suah, “Chitosan modifications for adsorption of pollutants – a review,” J. Hazard. Mater., vol. 408, 2021, Art. no. 124889, https://doi.org/10.1016/j.jhazmat.2020.124889.Suche in Google Scholar

[32] Z. Zhu, et al.., “Antifouling modification of PVDF membranes via incorporating positive-charge tuned quaternized chitosan magnetic particles,” J. Environ. Chem. Eng., vol. 11, no. 1, 2023, Art. no. 109192, https://doi.org/10.1016/j.jece.2022.109192.Suche in Google Scholar

[33] I. Ali, et al.., “Assessment of blend PVDF membranes, and the effect of polymer concentration and blend composition,” Membranes, vol. 8, no. 1, p. 13, 2018, https://doi.org/10.3390/membranes8010013.Suche in Google Scholar

[34] A. T. Yasir, A. Benamor, A. H. Hawari, and E. Mahmoudi, “Graphene oxide/chitosan doped polysulfone membrane for the treatment of industrial wastewater,” Emergent Mater., vols. 1–12, 2023.Suche in Google Scholar

[35] F. Carvalho, A. R. Prazeres, and J. Rivas, “Cheese whey wastewater: characterization and treatment,” Sci. Total Environ., vol. 445, pp. 385–396, 2013, https://doi.org/10.1016/j.scitotenv.2012.12.038.Suche in Google Scholar

[36] F. Malaspina, L. Stante, C. M. Cellamare, and A. Tilche, “Cheese whey and cheese factory wastewater treatment with a biological anaerobic—aerobic process,” Water Sci. Technol., vol. 32, no. 12, pp. 59–72, 1995, https://doi.org/10.2166/wst.1995.0459.Suche in Google Scholar

Received: 2024-03-10
Accepted: 2024-09-16
Published Online: 2024-11-05

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2024-0055/pdf
Button zum nach oben scrollen