Home CFD-PBM simulation of power law fluid in a bubble column reactor
Article
Licensed
Unlicensed Requires Authentication

CFD-PBM simulation of power law fluid in a bubble column reactor

  • Meng-Qiang Duan , Shao-Bai Li ORCID logo EMAIL logo , Manju L. Bhusal , Wei Zhang and Yu-Huan Ding
Published/Copyright: June 17, 2024

Abstract

A computational fluid dynamics coupled population balance model (CFD-PBM) was used to numerically simulate the fluid dynamics of bubble swarms in a bubble column containing non-Newtonian fluids. The effects of superficial gas velocity (U g ), the consistency index (K), and the flow index (n) on bubble size distribution (BSD), gas holdup, and fluid dynamic viscosity in a bubble column were analyzed at both local and overall scales. As U g increases, the bubble breakup occurs excessively, the gas holdup increases, and the dynamic viscosity decreases. K and n were used to characterize the rheological properties of power law fluid. As K increases, fluid viscosity increases, bubble breakup rate decreases, gas holdup in the top zone is slightly lower than in the middle zone, and dynamic viscosity increases. Within the range of n from 0.45 to 1.07, when n is smallest, the relative frequency of bubbles smaller than the initial size is relatively large, and the overall and local gas holdup are the highest. When n = 1.07, the fluid exhibits shear-thickening properties, and the dynamic viscosity variations are significant.


Corresponding author: Shao-Bai Li, School of Chemistry and Chemical Engineering, Guangxi Minzu University, 530006 Nanning, China, E-mail:

Funding source: National Science Foundation of Liaoning Province

Award Identifier / Grant number: 2019-MS-252

Award Identifier / Grant number: 21406141

  1. Research ethics: We can guarantee that our research is carried out in accordance with relevant laws and institutional guidelines. There is no violation of research ethics such as harming study participants and violating the principle of informed consent.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work was supported by The National Natural Science Foundation of China (No. 21406141) and The Natural Science Foundation of Liaoning Province (No. 2019-MS-252).

  5. Data availability: Not applicable.

References

[1] K. Guo, T. Wang, Y. Liu, and J. Wang, “CFD-PBM simulations of a bubble column with different liquid properties,” Chem. Eng. J., vol. 329, pp. 116–127, 2017, https://doi.org/10.1016/j.cej.2017.04.071.Search in Google Scholar

[2] A. D. Anastasiou, A. D. Passos, and A. A. Mouza, “Bubble columns with fine pore sparger and non-Newtonian liquid phase: prediction of gas holdup,” Chem. Eng. Sci., vol. 98, pp. 331–338, 2013, https://doi.org/10.1016/j.ces.2013.05.006.Search in Google Scholar

[3] L. Han, M. M. Taha, P. Kamalanathan, N. Y. Selem, and M. H. Al-Dahhan, “Experimentation and correlation development of mass transfer in a mimicked Fischer–Tropsch slurry bubble column reactor,” Heat Mass Tran., vol. 58, no. 7, pp. 1133–1143, 2022, https://doi.org/10.1007/s00231-021-03169-9.Search in Google Scholar

[4] M. Mokhtari and J. Chaouki, “A modelling approach to investigate the performance of slurry bubble column reactors implementing Fischer–Tropsch synthesis,” Can. J. Chem. Eng., vol. 102, no. 1, pp. 1–16, 2023, https://doi.org/10.1002/cjce.25057.Search in Google Scholar

[5] G. Montoya, D. Lucas, E. Baglietto, and Y. Liao, “A review on mechanisms and models for the churn-turbulent flow regime,” Chem. Eng. Sci., vol. 141, pp. 86–103, 2016, https://doi.org/10.1016/j.ces.2015.09.011.Search in Google Scholar

[6] H. Jin, S. Yang, G. He, Z. Guo, and Z. Tong, “An experimental study of holdups in large-scale p-xylene oxidation reactors using the γ -ray attenuation approach,” Chem. Eng. Sci., vol. 60, no. 22, pp. 5955–5961, 2005, https://doi.org/10.1016/j.ces.2005.02.064.Search in Google Scholar

[7] T. Wang, J. Wang, and Y. Jin, “Slurry reactors for gas-to-liquid processes: a review,” Ind. Eng. Chem. Res., vol. 46, no. 18, pp. 5824–5847, 2007, https://doi.org/10.1021/ie070330t.Search in Google Scholar

[8] Q. Huang, W. Zhang, and C. Yang, “Modeling transport phenomena and reactions in a pilot slurry airlift loop reactor for direct coal liquefaction,” Chem. Eng. Sci., vol. 135, pp. 441–451, 2015, https://doi.org/10.1016/j.ces.2015.01.003.Search in Google Scholar

[9] A. Shaikh and M. Al-Dahhan, “A new method for online flow regime monitoring in bubble column reactors via nuclear gauge densitometry,” Chem. Eng. Sci., vol. 89, pp. 120–132, 2013, https://doi.org/10.1016/j.ces.2012.11.023.Search in Google Scholar

[10] E. Camarasa, C. Vial, S. Poncin, G. Wild, N. Midoux, and J. Bouillard, “Influence of coalescence behaviour of the liquid and of gas sparging on hydrodynamics and bubble characteristics in a bubble column,” Chem. Eng. Process. Process Intensif., vol. 38, no. 4, pp. 329–344, 1999, https://doi.org/10.1016/s0255-2701(99)00024-0.Search in Google Scholar

[11] S. Shu, D. Vidal, F. Bertrand, and J. Chaouki, “Multiscale multiphase phenomena in bubble column reactors: a review,” Renew. Energy, vol. 141, pp. 613–631, 2019, https://doi.org/10.1016/j.renene.2019.04.020.Search in Google Scholar

[12] S. M. Bhavaraju, R. A. Mashelkar, and H. W. Blanch, “Bubble motion and mass transfer in non-Newtonian fluids: part II. Swarm of bubbles in a power law fluid,” AIChE J., vol. 24, no. 6, pp. 1070–1076, 1978.10.1002/aic.690240619Search in Google Scholar

[13] S. Li, S. Huang, and J. Fan, “Effect of surfactants on gas holdup in shear-thinning fluids,” Int. J. Chem. Eng., vol. 2017, no. 1, p. 9062649, 2017. https://doi.org/10.1155/2017/9062649.Search in Google Scholar

[14] A. Esmaeili, C. Guy, and J. Chaouki, “Local hydrodynamic parameters of bubble column reactors operating with non-Newtonian liquids: experiments and models development,” AIChE J., vol. 62, no. 4, pp. 1382–1396, 2016, https://doi.org/10.1002/aic.15130.Search in Google Scholar

[15] G. Besagni and F. Inzoli, “The effect of liquid phase properties on bubble column fluid dynamics: gas holdup, flow regime transition, bubble size distributions and shapes, interfacial areas and foaming phenomena,” Chem. Eng. Sci., vol. 170, pp. 270–296, 2017, https://doi.org/10.1016/j.ces.2017.03.043.Search in Google Scholar

[16] Z. Deng, T. Wang, N. Zhang, and Z. Wang, “Gas holdup, bubble behavior and mass transfer in a 5m high internal-loop airlift reactor with non-Newtonian fluid,” Chem. Eng. J., vol. 160, no. 2, pp. 729–737, 2010, https://doi.org/10.1016/j.cej.2010.03.078.Search in Google Scholar

[17] M. K. Moraveji and S. E. Mousavi, “Investigation of gas hold-up and bubble behavior in a split- cylinder airlift reactor: pseudo-plastic non-Newtonian fluids,” Iran. J. Chem. Eng., vol. 11, no. 3, pp. 3–15, 2014.Search in Google Scholar

[18] W. Sun and Z. Yu, “A novel correlation of bubble aspect ratio through analysis of gas/shear-thinning liquid two-phase flow in a bubble column,” Exp. Therm. Fluid Sci., vol. 149, p. 110996, 2023, https://doi.org/10.1016/j.expthermflusci.2023.110996.Search in Google Scholar

[19] H. M. Hulburt and S. Katz, “Some problems in particle technology: a statistical mechanical formulation,” Chem. Eng. Sci., vol. 19, no. 8, pp. 555–574, 1964, https://doi.org/10.1016/0009-2509(64)85047-8.Search in Google Scholar

[20] T. Wang, J. Wang, and Y. Jin, “A CFD–PBM coupled model for gas–liquid flows,” AIChE J., vol. 52, no. 1, pp. 125–140, 2006, https://doi.org/10.1002/aic.10611.Search in Google Scholar

[21] K. Guo, T. Wang, G. Yang, and J. Wang, “Distinctly different bubble behaviors in a bubble column with pure liquids and alcohol solutions,” J. Chem. Technol. Biotechnol., vol. 92, no. 2, pp. 432–441, 2017, https://doi.org/10.1002/jctb.5022.Search in Google Scholar

[22] H. Zhang, K. Guo, Y. Wang, A. Sayyar, and T. Wang, “Numerical simulations of the effect of liquid viscosity on gas-liquid mass transfer of a bubble column with a CFD-PBM coupled model,” Int. J. Heat Mass Tran., vol. 161, p. 120229, 2020, https://doi.org/10.1016/j.ijheatmasstransfer.2020.120229.Search in Google Scholar

[23] G. Yang, K. Guo, and T. Wang, “Numerical simulation of the bubble column at elevated pressure with a CFD-PBM coupled model,” Chem. Eng. Sci., vol. 170, pp. 251–262, 2017, https://doi.org/10.1016/j.ces.2017.01.013.Search in Google Scholar

[24] C. Xing, T. Wang, and J. Wang, “Experimental study and numerical simulation with a coupled CFD–PBM model of the effect of liquid viscosity in a bubble column,” Chem. Eng. Sci., vol. 95, pp. 313–322, 2013, https://doi.org/10.1016/j.ces.2013.03.022.Search in Google Scholar

[25] T. K. Gaurav, A. Prakash, and C. Zhang, “CFD modeling of the hydrodynamic characteristics of a bubble column in different flow regimes,” Int. J. Multiphase Flow, vol. 147, p. 103902, 2022, https://doi.org/10.1016/j.ijmultiphaseflow.2021.103902.Search in Google Scholar

[26] M. M. Paul and L. Pakzad, “Bubble size distribution and gas holdup in bubble columns employing non-Newtonian liquids: a CFD study,” Can. J. Chem. Eng., vol. 100, no. 10, pp. 3030–3046, 2022, https://doi.org/10.1002/cjce.24352.Search in Google Scholar

[27] M. Han, Z. Sha, A. Laari, and T. Koiranen, “CFD-PBM coupled simulation of an airlift reactor with non-Newtonian fluid,” Oil Gas Sci. Technol., vol. 72, no. 5, p. 26, 2017, https://doi.org/10.2516/ogst/2017017.Search in Google Scholar

[28] L. Wang, Q. Pan, J. Chen, and S. Yang, “CFD-PBM approach with different inlet locations for the gas-liquid flow in a laboratory-scale bubble column with activated sludge/water,” Computation, vol. 5, no. 4, p. 38, 2017, https://doi.org/10.3390/computation5030038.Search in Google Scholar

[29] X. Zhang, P. Zhu, S. Li, W. Fan, and J. Lian, “CFD-PBM simulation of hydrodynamics of microbubble column with shear-thinning fluid,” Int. J. Chem. React. Eng., vol. 19, no. 2, pp. 125–138, 2021, https://doi.org/10.1515/ijcre-2020-0172.Search in Google Scholar

[30] S. Li, Y. Ma, T. Fu, C. Zhu, and H. Li, “The viscosity distribution around a rising bubble in shear-thinning non-Newtonian fluids,” Braz. J. Chem. Eng., vol. 29, no. 2, pp. 265–274, 2012, https://doi.org/10.1590/s0104-66322012000200007.Search in Google Scholar

[31] B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows,” Comput. Methods Appl. Mech. Eng., vol. 3, no. 2, pp. 269–289, 1974, https://doi.org/10.1016/0045-7825(74)90029-2.Search in Google Scholar

[32] I. Khan, M. Wang, Y. Zhang, W. Tian, G. Su, and S. Qiu, “Two-phase bubbly flow simulation using CFD method: a review of models for interfacial forces,” Prog. Nucl. Energy, vol. 125, p. 103360, 2020, https://doi.org/10.1016/j.pnucene.2020.103360.Search in Google Scholar

[33] S. P. Pudasaini, “A fully analytical model for virtual mass force in mixture flows,” Int. J. Multiphase Flow, vol. 113, pp. 142–152, 2019, https://doi.org/10.1016/j.ijmultiphaseflow.2019.01.005.Search in Google Scholar

[34] X. Zhang, W. Yan, and Z. Luo, “CFD-PBM simulation of bubble columns: sensitivity analysis of the nondrag forces,” Ind. Eng. Chem. Res., vol. 59, no. 41, pp. 18674–18682, 2020, https://doi.org/10.1021/acs.iecr.0c02759.Search in Google Scholar

[35] X. Dong, X. Xu, and Z. Liu, “Behavior of bubble plume in shear-thinning crossflowing liquids,” Chem. Eng. Res. Des., vol. 168, pp. 288–296, 2021, https://doi.org/10.1016/j.cherd.2021.02.003.Search in Google Scholar

[36] S. Yamoah, R. Martínez-Cuenca, G. Monrós, S. Chiva, and R. Macián-Juan, “Numerical investigation of models for drag, lift, wall lubrication and turbulent dispersion forces for the simulation of gas–liquid two-phase flow,” Chem. Eng. Res. Des., vol. 98, pp. 17–35, 2015, https://doi.org/10.1016/j.cherd.2015.04.007.Search in Google Scholar

[37] T. Wang and J. Wang, “Numerical simulations of gas–liquid mass transfer in bubble columns with a CFD–PBM coupled model,” Chem. Eng. Sci., vol. 62, no. 24, pp. 7107–7118, 2007, https://doi.org/10.1016/j.ces.2007.08.033.Search in Google Scholar

[38] M. Ishii and N. Zuber, “Drag coefficient and relative velocity in bubbly, droplet or particulate flows,” AIChE J., vol. 25, no. 5, pp. 843–855, 1979, https://doi.org/10.1002/aic.690250513.Search in Google Scholar

[39] S. Agahzamin and L. Pakzad, “A comprehensive CFD study on the effect of dense vertical internals on the hydrodynamics and population balance model in bubble columns,” Chem. Eng. Sci., vol. 193, pp. 421–435, 2019, https://doi.org/10.1016/j.ces.2018.08.052.Search in Google Scholar

[40] F. Lehr and D. Mewes, “A transport equation for the interfacial area density applied to bubble columns,” Chem. Eng. Sci., vol. 56, no. 3, pp. 1159–1166, 2001, https://doi.org/10.1016/s0009-2509(00)00335-3.Search in Google Scholar

[41] H. Luo and H. F. Svendsen, “Theoretical model for drop and bubble breakup in turbulent dispersions,” AIChE J., vol. 42, no. 5, pp. 1225–1233, 1996, https://doi.org/10.1002/aic.690420505.Search in Google Scholar

[42] S. Degaleesan, M. Dudukovic, and Y. Pan, “Experimental study of gas-induced liquid-flow structures in bubble columns,” AIChE J., vol. 47, no. 9, pp. 1913–1931, 2001, https://doi.org/10.1002/aic.690470904.Search in Google Scholar

[43] S. Sharaf, M. Zednikova, M. C. Ruzicka, and B. J. Azzopardi, “Global and local hydrodynamics of bubble columns – effect of gas distributor,” Chem. Eng. J., vol. 288, pp. 489–504, 2016, https://doi.org/10.1016/j.cej.2015.11.106.Search in Google Scholar

[44] M. R. Bhole, J. B. Joshi, and D. Ramkrishna, “CFD simulation of bubble columns incorporating population balance modeling,” Chem. Eng. Sci., vol. 63, no. 8, pp. 2267–2282, 2008, https://doi.org/10.1016/j.ces.2008.01.013.Search in Google Scholar

[45] M. T. Dhotre and J. B. Joshi, “Two-dimensional CFD model for the prediction of flow pattern, pressure drop and heat transfer coefficient in bubble column reactors,” Chem. Eng. Res. Des., vol. 82, no. 6, pp. 689–707, 2004, https://doi.org/10.1205/026387604774195984.Search in Google Scholar

[46] D. Law, S. T. Jones, T. J. Heindel, and F. Battaglia, “A combined numerical and experimental study of hydrodynamics for an air-water external loop airlift reactor,” J. Fluid Eng., vol. 133, no. 2, p. 021301, 2011, https://doi.org/10.1115/1.4003424.Search in Google Scholar

[47] J. Sanyal, D. L. Marchisio, R. O. Fox, and K. Dhanasekharan, “On the comparison between population balance models for CFD simulation of bubble columns,” Ind. Eng. Chem. Res., vol. 44, no. 14, pp. 5063–5072, 2005, https://doi.org/10.1021/ie049555j.Search in Google Scholar

[48] S. Sarı, Ş. Ergün, M. Barık, C. Kocar, and C. N. Sökmen, “Modeling of isothermal bubbly flow with ınterfacial area transport equation and bubble number density approach,” Ann. Nucl. Energy, vol. 36, no. 2, pp. 222–232, 2009, https://doi.org/10.1016/j.anucene.2008.11.016.Search in Google Scholar

[49] A. Esmaeili, C. Guy, and J. Chaouki, “The effects of liquid phase rheology on the hydrodynamics of a gas–liquid bubble column reactor,” Chem. Eng. Sci., vol. 129, pp. 193–207, 2015, https://doi.org/10.1016/j.ces.2015.01.071.Search in Google Scholar

[50] P. Chen, M. P. Duduković, and J. Sanyal, “Three-dimensional simulation of bubble column flows with bubble coalescence and breakup,” AIChE J., vol. 51, no. 3, pp. 696–712, 2005, https://doi.org/10.1002/aic.10381.Search in Google Scholar

[51] A. H. Syed, M. Boulet, T. Melchiori, and J.-M. Lavoie, “CFD simulations of an air-water bubble column: effect of luo coalescence parameter and breakup kernels,” Front. Chem., vol. 5, p. 68, 2017, https://doi.org/10.3389/fchem.2017.00068.Search in Google Scholar PubMed PubMed Central

[52] N. Varallo, G. Besagni, and R. Mereu, “Computational fluid dynamics simulation of the heterogeneous regime in a large-scale bubble column,” Chem. Eng. Sci., vol. 280, p. 119090, 2023, https://doi.org/10.1016/j.ces.2023.119090.Search in Google Scholar

[53] W. T. Medjiade, A. R. Alvaro, and A. Schumpe, “Flow regime transitions in a bubble column,” Chem. Eng. Sci., vol. 170, pp. 263–269, 2017, https://doi.org/10.1016/j.ces.2017.04.010.Search in Google Scholar

[54] T. Wang, J. Wang, and Y. Jin, “A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow,” Chem. Eng. Sci., vol. 58, no. 20, pp. 4629–4637, 2003, https://doi.org/10.1016/j.ces.2003.07.009.Search in Google Scholar

[55] G. Kuncová and J. Zahradník, “Gas holdup and bubble frequency in a bubble column reactor containing viscous saccharose solutions,” Chem. Eng. Process. Process Intensif., vol. 34, no. 1, pp. 25–34, 1995, https://doi.org/10.1016/0255-2701(94)00563-x.Search in Google Scholar

[56] B. T. Kawalec-Pietrenko, “Time-dependent gas hold-up and bubble size distributions in a gas–highly viscous liquid–solid system,” Chem. Eng. J., vol. 50, no. 2, pp. B29–B37, 1992, https://doi.org/10.1016/0300-9467(92)80017-5.Search in Google Scholar

[57] X. Dong, et al.., “Effect of liquid phase rheology and gas–liquid interface property on mass transfer characteristics in bubble columns,” Chem. Eng. Res. Des., vol. 142, pp. 25–33, 2019, https://doi.org/10.1016/j.cherd.2018.11.035.Search in Google Scholar

[58] Y. Kawase and M. Moo-Young, “Influence of non-newtonian flow behaviour on mass transfer inbubble columns with and without draft tubes,” Chem. Eng. Commun., vol. 40, nos. 1–6, pp. 67–83, 1986, https://doi.org/10.1080/00986448608911691.Search in Google Scholar

[59] U. P. Veera and J. B. Joshi, “Measurement of gas hold-up profiles in bubble column by gamma ray tomography,” Chem. Eng. Res. Des., vol. 78, no. 3, pp. 425–434, 2000, https://doi.org/10.1205/026387600527329.Search in Google Scholar

[60] Z. Liu, X. Li, Z.-S. Mao, S. Yuan, and C. Yang, “Hydrodynamics of gas phase in a shallow bubble column from in-line photography,” Chem. Eng. Sci., vol. 221, p. 115703, 2020, https://doi.org/10.1016/j.ces.2020.115703.Search in Google Scholar

[61] T. Ziegenhein and D. Lucas, “The critical bubble diameter of the lift force in technical and environmental, buoyancy-driven bubbly flows,” Int. J. Multiphase Flow, vol. 116, pp. 26–38, 2019, https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.007.Search in Google Scholar

Received: 2024-01-16
Accepted: 2024-05-30
Published Online: 2024-06-17

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2024-0010/pdf
Scroll to top button