Home Numerical investigations on hydrothermal flame characteristics of water-cooled hydrothermal burner
Article
Licensed
Unlicensed Requires Authentication

Numerical investigations on hydrothermal flame characteristics of water-cooled hydrothermal burner

  • Yiran Geng , Shuzhong Wang EMAIL logo , Fan Zhang , Zicheng Li , Xinyi Zhang , Yanhui Li EMAIL logo and Wenqiang He
Published/Copyright: July 11, 2023

Abstract

Supercritical hydrothermal combustion, as a quick homogeneous oxidizing process, offers a promising treatment option for industrial wastewater. This paper established a computational fluid dynamics model of a water-cooled hydrothermal combustion burner to investigate the thermal flame characteristics. The effects of the fuel mass flow rate, fuel concentration, initial reactor temperature, reaction pressure, and oxidant temperature on the thermal combustion ignition were revealed. The results indicate that the fuel concentration (from 10 wt% to 60 wt%) and initial reactor temperature (from 623 to 773 K) had less effect on the ignition temperature. In contrast, the ignition temperature increases by 398 K with increasing fuel mass flow rate (from 24 kg h−1 to 1080 kg h−1). As the oxygen temperature increases (from 273 to 673 K), the ignition temperature gradually decreases to 573 K and then increases. An increase in reaction pressure can facilitate a decrease in ignition temperature to a certain extent, and the optimal reaction pressure is 25 MPa. This study provides a vital reference for a hydrothermal burner’s scale-up design and ignition operation.


Corresponding authors: Shuzhong Wang and Yanhui Li, Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China, E-mail: ,

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: Unassigned

Funding source: China Postdoctoral Science Foundation

Award Identifier / Grant number: Unassigned

Acknowledgments

This work was supported by the National Natural Science Foundation of China [51871179 and 22008190], and the China Postdoctoral Science Foundation [2022M722526].

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Augustine, C., and J. W. Tester. 2009. “Hydrothermal Flames: From Phenomenological Experimental Demonstrations to Quantitative Understanding.” The Journal of Supercritical Fluids 47: 415–30. https://doi.org/10.1016/j.supflu.2008.10.003.Search in Google Scholar

Baulch, D. L., C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, T. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz. 1994. “Evaluated Kinetic Data for Combustion Modeling Supplement-I.” Journal of Physical and Chemical Reference Data 23: 847–1033. https://doi.org/10.1063/1.555953.Search in Google Scholar

Bermejo, M. D., E. Fdez-Polanco, and M. J. Cocero. 2006. “Experimental Study of the Operational Parameters of a Transpiring Wall Reactor for Supercritical Water Oxidation.” The Journal of Supercritical Fluids 39: 70–9. https://doi.org/10.1016/j.supflu.2006.02.006.Search in Google Scholar

Bermejo, M. D., C. Jimenez, P. Cabeza, A. Matias-Gago, and M. J. Cocero. 2011. “Experimental Study of Hydrothermal Flames Formation Using a Tubular Injector in a Refrigerated Reaction Chamber. Influence of the Operational and Geometrical Parameters.” The Journal of Supercritical Fluids 59: 140–8. https://doi.org/10.1016/j.supflu.2011.08.009.Search in Google Scholar

Bermejo, M. D., P. Cabeza, J. P. S. Queiroz, C. Jimenez, and M. J. Cocero. 2011. “Analysis of the Scale up of a Transpiring Wall Reactor with a Hydrothermal Flame as a Heat Source for the Supercritical Water Oxidation.” The Journal of Supercritical Fluids 56: 21–32. https://doi.org/10.1016/j.supflu.2010.11.014.Search in Google Scholar

Cabeza, P., J. P. Silva Queiroz, M. Criado, C. Jimenez, M. Dolores Bermejo, F. Mato, and M. Jose Cocero. 2015. “Supercritical Water Oxidation for Energy Production by Hydrothermal Flame as Internal Heat Source. Experimental Results and Energetic Study.” Energy 90: 1584–94. https://doi.org/10.1016/j.energy.2015.06.118.Search in Google Scholar

Cocero, M. J., E. Alonso, M. T. Sanz, and F. Fdz-Polanco. 2002. “Supercritical Water Oxidation Process under Energetically Self-Sufficient Operation.” The Journal of Supercritical Fluids 24: 37–46. https://doi.org/10.1016/s0896-8446(02)00011-6.Search in Google Scholar

Cui, C. C., Y. H. Li, S. Z. Wang, M. M. Ren, C. Yang, Z. H. Jiang, and J. Zhang. 2020. “Review on an Advanced Combustion Technology: Supercritical Hydrothermal Combustion.” Applied Sciences 10: 1645.10.3390/app10051645Search in Google Scholar

Cui, C. C. 2021. Study on the Flame Characteristics and Structure Optimization of Supercritical Hydrothermal Combustion Assisted Multithermal Fluid Generator. Xi’an: Xi’an Jiaotong University.Search in Google Scholar

McAdams, W. H. 1942. Heat Transmission, New York, USA.Search in Google Scholar

Hirth, T., and E. U. Franck. 1993. “Oxidation and Hydrothermolysis of Hydrocarbons in Supercritical Water at High Pressures.” Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 97: 1091–8. https://doi.org/10.1002/bbpc.19930970905.Search in Google Scholar

Japas, M. L., and E. U. Franck. 1985. “High-pressure Phase-Equilibria and Pvt-Data of the Water-Oxygen System Including Water–Air to 673 K and 250 MPa.” Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 89: 1268–75. https://doi.org/10.1002/bbpc.19850891206.Search in Google Scholar

Li, L., Y. Shi, Y. Huang, A. Xing, and H. Xue. 2022. “The Effect of Governance on Industrial Wastewater Pollution in China.” International Journal of Environmental Research and Public Health 19. https://doi.org/10.3390/ijerph19159316.Search in Google Scholar PubMed PubMed Central

Li, Y., S. Wang, M. Ren, J. Zhang, D. Xu, L. Qian, and P. Sun. 2016. Recent Advances on Research and Application on Supercritical Hydrothermal Combustion Technology, Vol. 35, 1942–55. Beijing: Chemical Industry and Engineering Progress.Search in Google Scholar

Long, Z. S. Z. J. W. J. P. 2020. “Design of A2/O Process for Printing and Dyeing Organic Wastewater Treatment.” China Biogas 6.Search in Google Scholar

Martin, A., M. D. Bermejo, and M. J. Cocero. 2011. “Recent Developments of Supercritical Water Oxidation: A Patents Review.” Recent Patents on Chemical Engineering 4: 219–30. https://doi.org/10.2174/2211334711104030219.Search in Google Scholar

Meier, T., P. Stathopoulos, and P. R. von Rohr. 2016. “Hot Surface Ignition of Oxygen-Ethanol Hydrothermal Flames.” The Journal of Supercritical Fluids 107: 462–8. https://doi.org/10.1016/j.supflu.2014.11.012.Search in Google Scholar

Meier, T., M. J. Schuler, P. Stathopoulos, B. Kramer, and P. R. von Rohr. 2017. “Hot Surface Ignition and Monitoring of an Internal Oxygen-Ethanol Hydrothermal Flame at 260 Bar.” The Journal of Supercritical Fluids 130: 230–8. https://doi.org/10.1016/j.supflu.2016.09.015.Search in Google Scholar

Narayanan, C., C. Frouzakis, K. Boulouchos, K. Prikopsky, B. Wellig, and P. R. von Rohr. 2008. “Numerical Modelling of a Supercritical Water Oxidation Reactor Containing a Hydrothermal Flame.” The Journal of Supercritical Fluids 46: 149–55. https://doi.org/10.1016/j.supflu.2008.04.005.Search in Google Scholar

Phenix, B. D., J. L. DiNaro, J. W. Tester, J. B. Howard, and K. A. Smith. 2002. “The Effects of Mixing and Oxidant Choice on Laboratory-Scale Measurements of Supercritical Water Oxidation Kinetics.” Industrial & Engineering Chemistry Research 41: 624–+. https://doi.org/10.1021/ie010473u.Search in Google Scholar

Príkopský, K. 2007. Characterization of Continuous Diffusion Flames in Supercritical Water. Zurich: ETH Zurich.Search in Google Scholar

Prikopsky, K., B. Wellig, and P. R. von Rohr. 2007. “SCWO of Salt Containing Artificial Wastewater Using a Transpiring-Wall Reactor: Experimental Results.” The Journal of Supercritical Fluids 40: 246–57. https://doi.org/10.1016/j.supflu.2006.05.007.Search in Google Scholar

Queiroz, J. P. S., M. D. Bermejo, and M. J. Cocero. 2014. “Numerical Study of the Influence of Geometrical and Operational Parameters in the Behavior of a Hydrothermal Flame in Vessel Reactors.” Chemical Engineering Science 112: 47–55. https://doi.org/10.1016/j.ces.2014.03.019.Search in Google Scholar

Reddy, S. N., S. Nanda, U. G. Hegde, M. C. Hicks, and J. A. Kozinski. 2017. “Ignition of N-Propanol-Air Hydrothermal Flames during Supercritical Water Oxidation.” Proceedings of the Combustion Institute 36: 2503–11. https://doi.org/10.1016/j.proci.2016.05.042.Search in Google Scholar

Reddy, S. N., S. Nanda, J. A. Okolie, A. K. Dalai, M. C. Hicks, U. G. Hegde, and J. A. Kozinski. 2022. “Hydrothermal Flames for Subaquatic, Terrestrial and Extraterrestrial Applications.” Journal of Hazardous Materials 424. https://doi.org/10.1016/j.jhazmat.2021.127520.Search in Google Scholar PubMed

Ren, M., S. Wang, J. Zhang, Y. Guo, D. Xu, and Y. Wang. 2017. “Characteristics of Methanol Hydrothermal Combustion: Detailed Chemical Kinetics Coupled with Simple Flow Modeling Study.” Industrial & Engineering Chemistry Research 56: 5469–78. https://doi.org/10.1021/acs.iecr.7b00886.Search in Google Scholar

Ren, M., S. Wang, C. Yang, H. Xu, Y. Guo, and D. Roekaerts. 2019. “Supercritical Water Oxidation of Quinoline with Moderate Preheat Temperature and Initial Concentration.” Fuel 236: 1408–14. https://doi.org/10.1016/j.fuel.2018.09.091.Search in Google Scholar

Ren, M., S. Wang, N. Romero-Anton, J. Zhao, C. Zou, and D. Roekaerts. 2021. “Numerical Study of a Turbulent Co-axial Non-premixed Flame for Methanol Hydrothermal Combustion: Comparison of the EDC and FGM Models.” The Journal of Supercritical Fluids 169: 105132, https://doi.org/10.1016/j.supflu.2020.105132.Search in Google Scholar

Ren, M. M. 2019. Study on Supercritical Hydrothermal Combustion: Chemical Reaction Mechanism and the Flame Characteristics Under Different Flow Pattern. Xi’an: Xi’an Jiaotong University.Search in Google Scholar

Schilling, W., and E. U. Franck. 1988. “Combustion and Diffusion Flames at High-Pressure to 2000 Bar.” Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 92: 631–6. https://doi.org/10.1002/bbpc.198800149.Search in Google Scholar

Sierra-Pallares, J., M. Teresa Parra-Santos, J. Garcia-Serna, F. Castro, and M. Jose Cocero. 2009. “Numerical Modelling of Hydrothermal Flames. Micromixing Effects over Turbulent Reaction Rates.” The Journal of Supercritical Fluids 50: 146–54. https://doi.org/10.1016/j.supflu.2009.05.001.Search in Google Scholar

Sobhy, A., I. S. Butler, and J. A. Kozinski. 2007. “Selected Profiles of High-Pressure Methanol–Air Flames in Supercritical Water.” Proceedings of the Combustion Institute 31: 3369–76. https://doi.org/10.1016/j.proci.2006.07.253.Search in Google Scholar

Steeper, R. R., S. F. Rice, M. S. Brown, and S. C. Johnston. 1992. “Methane and Methanol Diffusion Flames in Supercritical Water.” The Journal of Supercritical Fluids 5: 262–8. https://doi.org/10.1016/0896-8446(92)90017-e.Search in Google Scholar

Steinle, J. U., and E. U. Franck. 1995. “High Pressure Combustion – Ignition Temperatures to 1000 Bar.” Berichte der Bunsengesellschaft fur physikalische Chemie 99: 66–73. https://doi.org/10.1002/bbpc.19950990110.Search in Google Scholar

Wang, X., H. Zhang, S. Yang, and Z. Ge. 2017. “Industrial Wastewater Treatment Techniques and Prospects.” Applied Chemical Industry 46: 563–8.Search in Google Scholar

Wellig, B., M. Weber, K. Lieball, K. Prikopsky, and P. R. von Rohr. 2009. “Hydrothermal Methanol Diffusion Flame as Internal Heat Source in a SCWO Reactor.” The Journal of Supercritical Fluids 49: 59–70. https://doi.org/10.1016/j.supflu.2008.11.021.Search in Google Scholar

Xu, D., P. Feng, Y. Wang, W. Yang, Y. Wang, and S. Sun. 2021. “Effects of Structural Parameters on Water Film Properties of Transpiring Wall Reactor.” AIChE Journal 68: 2, https://doi.org/10.1002/aic.17472.Search in Google Scholar

Xu, J. 2016. “Research and Application of Improving Multiple Thermal Fluid Recovery Effect by Profile Control with Foam.” Oil Driling and Production Technology 37: 114–6.Search in Google Scholar

Yang, J., S. Wang, Y. Li, X. Tang, Y. Wang, D. Xu, and Y. Guo. 2019. “Effect of Salt Deposit on Corrosion Behavior of Ni-Based Alloys and Stainless Steels in Supercritical Water.” The Journal of Supercritical Fluids 152: 104570, https://doi.org/10.1016/j.supflu.2019.104570.Search in Google Scholar

Zhang, F., S. Chen, Z. Wang, C. Ma, G. Chen, and J. Zhang. 2010. “IEEE, Numerical Simulation of Supercritical Water Oxidation with a Transpiring Wall Reactor.” In: 2010 4th International Conference on Bioinformatics and Biomedical Engineering (ICBBE 2010), 2010.10.1109/ICBBE.2010.5515571Search in Google Scholar

Zhang, F., Y. Zhang, C. Xu, S. Chen, G. Chen, and C. Ma. 2015. “Experimental Study on the Ignition and Extinction Characteristics of the Hydrothermal Flame.” Chemical Engineering & Technology 38: 2054–66. https://doi.org/10.1002/ceat.201300571.Search in Google Scholar

Zhang, J., S. Wang, M. Ren, J. Lu, S. Chen, and H. Zhang. 2019. “Effect Mechanism of Auxiliary Fuel in Supercritical Water: A Review.” Industrial & Engineering Chemistry Research 58: 1480–94. https://doi.org/10.1021/acs.iecr.8b05696.Search in Google Scholar

Zhang, J., L. Zhang, C. Men, M. Ren, H. Zhang, and J. Lu. 2022. “Ignition of Supercritical Hydrothermal Flames in Co-flow Jets.” The Journal of Supercritical Fluids 188: 105683, https://doi.org/10.1016/j.supflu.2022.105683.Search in Google Scholar

Zhu, K., and G. Hu. 2014. “Supercritical Hydrothermal Synthesis of Titanium Dioxide Nanostructures with Controlled Phase and Morphology.” The Journal of Supercritical Fluids 94: 165–73. https://doi.org/10.1016/j.supflu.2014.07.011.Search in Google Scholar

Received: 2023-02-22
Accepted: 2023-06-05
Published Online: 2023-07-11

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2023-0040/pdf
Scroll to top button