Startseite Synergistic effects of hierarchical porous structure, acidity and nickel metal for hydro-liquefaction of thermal extracts from lignite over Ni/ZSM-5
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synergistic effects of hierarchical porous structure, acidity and nickel metal for hydro-liquefaction of thermal extracts from lignite over Ni/ZSM-5

  • Ning Li , Shibiao Ren EMAIL logo , Tao Jiang , Jingchong Yan , Zhicai Wang , Zhiping Lei , Chunxiu Pan , Shigang Kang , Zhanku Li und Hengfu Shui EMAIL logo
Veröffentlicht/Copyright: 31. Mai 2022

Abstract

Hydro-liquefaction of the thermal extracts (HPC) from lignite was investigated over ZSM-5 and Ni/ZSM-5 with hierarchical pores or not. The thermal extracts dissolved (HPC-S) and deposited (HPC-D) at room temperature were prepared to compare their hydro-liquefaction performances. Combined to the hydrogenation properties of ZSM-5 and Ni/ZSM-5 catalysts for tetralin as a model compound, the roles of the porous structure, acidity and hydrogenation component in Ni/ZSM-5 for hydro-liquefaction of HPC were investigated. A synergy of the porous structures, nickel metal and acidity for hydro-liquefaction of HPC-S over Ni/ZSM-5 catalyst was found. During hydro-liquefaction, it is essential for the presence of nickel in the catalyst, since the parts of the benzene rings in HPC-S are first saturated by hydrogen under the role nickel. Then a certain acidity especially Brønsted acid is required in the catalyst to open the saturated benzene rings. Since there are the macromolecular organic compounds in the HPC-S, the hierarchical porous structures are required in the catalyst to promote the hydro-liquefaction performance due to their improvement on the mass transfer diffusion efficiency.


Corresponding authors: Shibiao Ren and Hengfu Shui, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Ma’anshan, Anhui 243002, China, E-mail: ,

Award Identifier / Grant number: 21776001

Award Identifier / Grant number: 21808002

Award Identifier / Grant number: 21875001

Award Identifier / Grant number: 21878001

Award Identifier / Grant number: 21978002

Award Identifier / Grant number: 22008001

Award Identifier / Grant number: 22078002

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Natural Science Foundation of China (Grants 21978002, 21878001, 22078002, 21776001, 21875001, 21808002 and 22008001).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Almulla, F. M., S. A. Ali, M. R. Aldossary, E. I. Alnaimi, A. B. Jumah, and A. A. Garforth. 2020. “Transalkylation of 1,2,4-Trimethylbenzene with Toluene Over Large Pore Zeolites: Role of Pore Structure and Acidity.” Applied Catalysis A: General 608: 117886, https://doi.org/10.1016/j.apcata.2020.117886.Suche in Google Scholar

Anggoro, D. D., H. Oktavianty, S. B. Sasongko, and L. Buchori. 2020. “Effect of Dealumination on the Acidity of Zeolite Y and the Yield of Glycerol Mono Stearate (GMS).” Chemosphere 257: 127012, https://doi.org/10.1016/j.chemosphere.2020.127012.Suche in Google Scholar PubMed

Auepattana-aumrung, C., S. Praserthdam, S. Wannakao, B. Jongsomjit, J. Panpranot, and P. Praserthdam. 2021. “Observation of Reduction on Alkane Products in Butene Cracking Over ZSM-5 Modified with Fe, Cu, and Ni Catalysts.” Fuel 291: 120265, https://doi.org/10.1016/j.fuel.2021.120265.Suche in Google Scholar

Bi, C. Y., X. Wang, Q. You, B. Y. Liu, Z. Li, J. B. Zhang, Q. Q. Hao, M. Sun, H. Y. Chen, and X. X. Ma. 2020. “Catalytic Upgrading of Coal Pyrolysis Volatiles by Ga-Substituted Mesoporous ZSM-5.” Fuel 267: 117217, https://doi.org/10.1016/j.fuel.2020.117217.Suche in Google Scholar

Bolshakov, A., R. V. D. Poll, T. V. Bergen-Brenkman, S. C. C. Wiedemann, N. Kosinov, and E. J. M. Hensen. 2020. “Hierarchically Porous FER Zeolite Obtained via FAU Transformation for Fatty Acid Isomerization.” Applied Catalysis B: Environmental 263: 118356, https://doi.org/10.1016/j.apcatb.2019.118356.Suche in Google Scholar

Cai, R., X. B. Pei, H. L. Pan, K. Wan, H. Chen, Z. Zhang, and Y. Y. Zhang. 2020. “Biomass Catalytic Pyrolysis Over Zeolite Catalysts with an Emphasis on Porosity and Acidity: A State-of-the-Art Review.” Energy & Fuels 34: 11771–90, https://doi.org/10.1021/acs.energyfuels.0c02147.Suche in Google Scholar

Chen, F. Q., J. Hao, Y. Y. Yua, D. G. Cheng, and X. L. Zhan. 2022. “The Influence of External Acid Strength of Hierarchical ZSM-5 Zeolites on N-Heptane Catalytic Cracking.” Microporous and Mesoporous Materials 330: 111575, https://doi.org/10.1016/j.micromeso.2021.111575.Suche in Google Scholar

Fawaz, E. G., D. A. Salam, L. Pinard, and T. Jean Daou. 2019. “Study on the Catalytic Performance of Different Crystal Morphologies of HZSM-5 Zeolites for the Production of Biodiesel: A Strategy to Increase Catalyst Effectiveness.” Catalysis Science and Technology 9: 5456–71, https://doi.org/10.1039/c9cy01427f.Suche in Google Scholar

Groen, J. C., J. A. Moulijn, and J. Pérez-Ramírez. 2005. “Decoupling Mesoporosity Formation and Acidity Modification in ZSM-5 Zeolites by Sequential Desilication–Dealumination.” Microporous & Mesoporous Materials 87: 153–61, https://doi.org/10.1016/j.micromeso.2005.07.050.Suche in Google Scholar

Hao, P., Z. Q. Bai, R. R. Hou, J. L. Xu, J. Bai, Z. X. Guo, L. X. Kong, and W. Li. 2018. “Effect of Solvent and Atmosphere on Product Distribution, Hydrogen Consumption and Coal Structural Change During Preheating Stage in Direct Coal Liquefaction.” Fuel 211: 783–8, https://doi.org/10.1016/j.fuel.2017.09.122.Suche in Google Scholar

Jaroszewska, K., A. Masalska, K. Bączkowska, and J. R. Grzechowiak. 2012. “Conversion of Decalin and 1-Methylnaphthalene Over Al/SBA-15 Supported Pt Catalysts.” Catalysis Today 196: 110–8, https://doi.org/10.1016/j.cattod.2012.06.011.Suche in Google Scholar

Kong, J., X. Y. Wei, M. X. Zhao, Z. K. Li, H. L. Yan, Q. X. Zheng, and Z. M. Zong. 2016a. “Effects of Sequential Extraction and Thermal Dissolution on the Structure and Composition of Buliangou Subbituminous Coal.” Fuel Processing Technology 148: 324–31, https://doi.org/10.1016/j.fuproc.2016.03.014.Suche in Google Scholar

Kong, J., X. Y. Wei, Z. K. Li, H. L. Yan, M. X. Zhao, and Z. M. Zong. 2016b. “Identification of Organonitrogen and Organooxygen Compounds in the Extraction Residue from Buliangou Subbituminous Coal by FTICRMS.” Fuel 171: 151–8, https://doi.org/10.1016/j.fuel.2015.12.048.Suche in Google Scholar

Kubička, D., N. Kumar, P. Mäki-Arvela, M. Tiitta, V. Niemi, T. Salmi, and D. Y. Murzin. 2004. “Ring Opening of Decalin Over Zeolites I. Activity and Selectivity of Proton-Form Zeolites.” Journal of Catalysis 222: 65–79, https://doi.org/10.1016/j.jcat.2003.10.027.Suche in Google Scholar

Li, W. L., F. Li, H. Y. Wang, M. J. Liao, P. Li, J. J. Zheng, C. Y. Tu, and R. F. Li. 2020a. “Hierarchical Mesoporous ZSM-5 Supported Nickel Catalyst for the Catalytic Hydrodeoxygenation of Anisole to Cyclohexane.” Molecular Catalysis 480: 110642, https://doi.org/10.1016/j.mcat.2019.110642.Suche in Google Scholar

Li, W. L., H. Y. Wang, X. Z. Wu, L. E. Betancourt, C. Y. Tu, M. J. Liao, X. Y. Cui, F. Li, J. J. Zheng, and R. F. Li. 2020b. “Ni/hierarchical ZSM-5 Zeolites as Promising Systems for Phenolic Bio-Oil Upgrading: Guaiacol Hydrodeoxygenation.” Fuel 274: 117859, https://doi.org/10.1016/j.fuel.2020.117859.Suche in Google Scholar

Li, D. B., Y. M. Chen, J. P. Hu, B. Q. Deng, X. W. Cheng, and Y. Zhang. 2020c. “Synthesis of Hierarchical Chabazite Zeolite via Interzeolite Transformation of Coke-Containing Spent MFI.” Applied Catalysis B: Environmental 270: 118881, https://doi.org/10.1016/j.apcatb.2020.118881.Suche in Google Scholar

Lu, H. Y., X. Y. Wei, R. Yu, Y. L. Peng, X. Z. Qi, L. M. Qie, Q. Wei, J. Lv, Z. M. Zong, W. Zhao, Y. P. Zhao, Z. H. Ni, and L. Wu. 2011. “Sequential Thermal Dissolution of Huolinguole Lignite in Methanol and Ethanol.” Energy & Fuels 25: 2741–5, https://doi.org/10.1021/ef101734f.Suche in Google Scholar

Mathews, J. P., C. Burgess-Clifford, and P. Painter. 2015. “Interactions of Illinois No. 6 Bituminous Coal with Solvents: A Review of Solvent Swelling and Extraction Literature.” Energy & Fuels 29: 1279–94, https://doi.org/10.1021/ef502548x.Suche in Google Scholar

Ren, X. Y., J. P. Cao, X. Y. Zhao, Z. Yang, S. N. Liu, and X. Y. Wei. 2018. “Enhancement of Aromatic Products from Catalytic Fast Pyrolysis of Lignite over Hierarchical HZSM-5 by Piperidine-Assisted Desilication.” ACS Sustainable Chemistry & Engineering 6: 1792–802, https://doi.org/10.1021/acssuschemeng.7b03185.Suche in Google Scholar

Ren, S. B., R. Zhao, P. Zhang, Z. P. Lei, Z. C. Wang, S. G. Kang, C. X. Pan, and H. F. Shui. 2014. “Effect of Activation Atmosphere on the Reduction Behaviors, Dispersion and Activities of Nickel Catalysts for the Hydrogenation of Naphthalene.” Reaction Kinetics, Mechanisms and Catalysis 111: 247–57, https://doi.org/10.1007/s11144-013-0629-3.Suche in Google Scholar

Santikunaporn, M., J. E. Herrera, S. Jongpatiwut, D. E. Resasco, W. E. Alvarez, and E. L. Sughrue. 2004. “Ring Opening of Decalin and Tetralin on HY and Pt/HY Zeolite Catalysts.” Journal of Catalysis 228: 100–13, https://doi.org/10.1016/j.jcat.2004.08.030.Suche in Google Scholar

Shu, N., C. Li, M. Y. Chai, M. R. Maksudur, Y. K. Li, M. Sarker, and R. H. Liu. 2021. “Performance of Alkali and Ni-Modified ZSM-5 During Catalytic Pyrolysis of Extracted Hemicellulose from Rice Straw for the Production of Aromatic Hydrocarbons.” Renewable Energy 175: 936–51, https://doi.org/10.1016/j.renene.2021.05.005.Suche in Google Scholar

Shui, H. F., Z. C. Wang, and M. Cao. 2008. “Effect of Pre-swelling of Coal on its Solvent Extraction and Liquefaction Properties.” Fuel 87: 2908–13, https://doi.org/10.1016/j.fuel.2008.04.028.Suche in Google Scholar

Shui, H. F., C. J. Shan, Z. Y. Cai, Z. C. Wang, Z. P. Lei, S. B. Ren, C. X. Pan, and H. P. Li. 2011. “Co-liquefaction Behavior of a Sub-bituminous Coal and Sawdust.” Energy 36 (11): 6645–50, https://doi.org/10.1016/j.energy.2011.08.046.Suche in Google Scholar

Shui, H. F., L. Yang, T. Shui, C. X. Pan, H. Y. Li, Z. C. Wang, Z. P. Lei, S. B. Ren, and S. G. Kang. 2014. “Hydro-Liquefaction of Thermal Dissolution Soluble Fraction of Shenfu Subbituminous Coal and Reusability of Catalyst on the Hydro-Liquefaction.” Fuel 115: 227–31, https://doi.org/10.1016/j.fuel.2013.07.002.Suche in Google Scholar

Shui, H. F., W. W. Zhu, W. W. Wang, C. X. Pan, Z. C. Wang, Z. P. Lei, S. B. Ren, and S. G. Kang. 2015. “Thermal Dissolution of Lignite and Liquefaction Behaviors of its Thermal Dissolution Soluble Fractions.” Fuel 139: 516–22, https://doi.org/10.1016/j.fuel.2014.08.070.Suche in Google Scholar

Shui, H. F., H. Y. Xu, Y. Zhou, T. Shui, C. X. Pan, Z. C. Wang, Z. P. Lei, S. B. Ren, S. G. Kang, and C. B. Xu. 2017. “Study on Hydro-Liquefaction Kinetics of Thermal Dissolution Soluble Fraction from Shenfu Sub-bituminous Coal.” Fuel 200: 576–82, doi:https://doi.org/10.1016/j.fuel.2017.03.048.Suche in Google Scholar

Shui, H. F., L. Zhao, J. L. Sun, T. Shui, C. X. Pan, Z. C. Wang, Z. P. Lei, S. B. Ren, S. G. Kang, and C. B. Xu. 2020. “Hydro-Liquefaction of Asphaltene from a Lignite for Potential Jet Fuel.” Fuel 262: 116435, https://doi.org/10.1016/j.fuel.2019.116435.Suche in Google Scholar

Wang, Z. C., L. Li, R. N. Hu, X. L. Wang, C. X. Pan, S. G. Kang, S. B. Ren, Z. P. Lei, and H. F. Shui. 2018. “Study on the Thermal Liquefaction of Xilinguole Lignite in Solvent at High Temperature.” Fuel Processing Technology 176: 167–73, https://doi.org/10.1016/j.fuproc.2018.03.025.Suche in Google Scholar

Wang, Z. j., R. X. Zhang, J. G. Wang, Z. W. Yu, Y. J. Xiang, L. J. Kong, H. Q. Liu, and A. Z. Ma. 2022. “Hierarchical Zeolites Obtained by Alkaline Treatment for Enhanced N-Pentane Catalytic Cracking.” Fuel 313: 122669, https://doi.org/10.1016/j.fuel.2021.122669.Suche in Google Scholar

Xian, X. C., M. J. He, Y. K. Gao, Y. Bi, Y. R. Chu, J. Chen, L. C. Dong, J. Wang, and S. Zhao. 2021. “Acidity Tuning of HZSM-5 Zeolite by Neutralization Titration for Coke Inhibition in Supercritical Catalytic Cracking of N-Dodecane.” Applied Catalysis A: General 623: 118278, https://doi.org/10.1016/j.apcata.2021.118278.Suche in Google Scholar

Yan, D. J., Z. H. Chen, M. D. Ma, Y. K. Yu, Q. Y. Liu, and C. He. 2022. “Hierarchical Cu-Mn/ZSM-5 with Boosted Activity and Selectivity for N-Butylamine Destruction: Synergy of Pore Structure and Surface Acidity.” Applied Catalysis A: General 636: 118579, https://doi.org/10.1016/j.apcata.2022.118579.Suche in Google Scholar

Yan, J. C., Z. Q. Bai, W. Li, and J. Bai. 2014. “Direct Liquefaction of a Chinese Brown Coal and CO2 Gasification of the Residues.” Fuel 136: 280–6, https://doi.org/10.1016/j.fuel.2014.07.054.Suche in Google Scholar

Yang, K. Y., F. Zhou, H. X. Ma, L. H. Yu, and G. Wu. 2021. “Glucose-Assisted Synthesis of Hierarchical HZSM-5 for Catalytic Fast Pyrolysis of Cellulose to Aromatics.” ChemistrySelect 6: 11591–8, https://doi.org/10.1002/slct.202102978.Suche in Google Scholar

Zha, X., S. B. Ren, T. Jiang, J. C. Yan, Z. C. Wang, Z. P. Lei, C. X. Pan, S. G. Kang, Z. K. Li, and H. F. Shui. 2021. “Fractionation and Characterization of Thermal Extracts from Lignite Under Ultrasonic-Assisted Extraction.” Carbon Resources Conversion 4: 214–8, https://doi.org/10.1016/j.crcon.2021.07.001.Suche in Google Scholar

Zhao, J. P., J. P. Cao, F. Wei, X. Y. Zhao, X. B. Feng, X. Huang, M. Zhao, and X. Y. Wei. 2019. “Sulfation-Acidified HZSM-5 Catalyst for In-Situ Catalytic Conversion of Lignite Pyrolysis Volatiles to Light Aromatics.” Fuel 255: 115784, https://doi.org/10.1016/j.fuel.2019.115784.Suche in Google Scholar

Received: 2021-12-17
Accepted: 2022-05-16
Published Online: 2022-05-31

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2021-0296/html
Button zum nach oben scrollen