Startseite Naturwissenschaften Propargyloligosilazane matrixed composite for high temperature material combining polymer and ceramic properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Propargyloligosilazane matrixed composite for high temperature material combining polymer and ceramic properties

  • Lixin Xuan EMAIL logo , Diansen Li und Mingcun Wang EMAIL logo
Veröffentlicht/Copyright: 10. Februar 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A new single-phased thermosetting resin (propargyloligosilazane, POSZ) was prepared through Hofmann alkylation of oligosilazane with propargylbromide; the propargyl content in POSZ was controlled by monitoring the amount of propargylbromide in synthesis. The characterizations showed that POSZ has ideal rheology during material processing, the thermal curing temperature could be lowered when isocyanate was used as crosslinking agent, and the thermally cured POSZ can be pyrolyzed into anti-oxidative ceramic at a high yield of >70%. For POSZ-matrixed carbon-fabric laminate composite, it possessed high mechanical properties and retained the original shape with the increase of temperature as high as 800 °C. The POSZ-matrixed laminate has the mechanical properties combining polymer character at room temperature and ceramic character at high temperature, and it will find many prospective high temperature applications in need of polymer and ceramic properties simultaneously.


Corresponding authors: Lixin Xuan, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing210016, Jiangsu Province, China, Tel: +86 531 85665033, E-mail: ; Mingcun Wang, School of Chemistry, Beihang University, 37 Xueyuan Road, Beijing100191, China, Tel: +86 10 82316160, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Bechel, V. T., S. Safriet, J. M. Brown, and M. R. Unroe. 2013. “Bismaleimide/preceramic Polymer Blends for Hybrid Material Transition Regions: Part 1. Processing and Characterization.” High Performance Polymers 25 (4): 363–74. https://doi.org/10.1177/0954008312468351.Suche in Google Scholar

Bernard, S., M. Weinmann, P. Gerstel, P. Miele, and F. Aldinger. 2005. “Boron-modified Polysilazane as a Novel Single-Source Precursor for SiBCN Ceramic Fibers: Synthesis, Melt-Spinning, Curing and Ceramic Conversion.” Journal of Materials Chemistry 15 (2): 289–99. https://doi.org/10.1039/b408295h.Suche in Google Scholar

Blanco, I., L. Oliveri, G. Cicala, and A. Recca. 2012. “Effects of Novel Reactive Toughening Agent on Thermal Stability of Epoxy Resin.” Journal of Thermal Analysis and Calorimetry 108 (2): 685–93. https://doi.org/10.1007/s10973-011-2095-3.Suche in Google Scholar

Droske, J. P., Stille, J. K., Alston, W. B. 1984. “Biphenylene End-Capped Polyquinoline and Polyimide Prepolymers as Matrix Resins for High-Use-Temperature Composites.” Macromolecules 17: 14−18. https://doi.org/10.1021/ma00131a003.Suche in Google Scholar

Gottardo, L., S. Bernard, C. Gervais, M. Weinmann, and P. Miele. 2012. “Study of the Intermediate Pyrolysis Steps and Mechanism Identification of Polymer-Derived SiBCN Ceramics.” Journal of Materials Chemistry 22 (34): 17923–33. https://doi.org/10.1039/c2jm32737f.Suche in Google Scholar

Hamerton, I. 1994. Chemistry and Technology of Cyanate Ester Resins. Glasgow: Blackie Academic & Professional.10.1007/978-94-011-1326-7Suche in Google Scholar

Huang, C. and M. Wang. 2016. “Propargyl Resin Derived from Biosynthesized Oligophenols for the Application of High Temperature Composite Matrix.” Canadian Journal of Chemical Engineering 94 (1): 41–5. https://doi.org/10.1002/cjce.22361.Suche in Google Scholar

Itoh, M., K. Inoue, K. Iwata, M. Mitsuzuka, and T. Kakigano. 1997. “New Highly Heat-Resistant Polymers Containing Silicon: Poly(silyleneethynylenephenyleneethynylene)s.” Macromolecules 30: 694−701. https://doi.org/10.1021/ma961081f.Suche in Google Scholar

Johnston, P. K., E. Doyle, and A. Orzel. 1988. “Phenolics: A Literature Review of Thermal Decomposition Products and Toxicity.” International Journal of Toxicology 7 (2): 201–20. https://doi.org/10.3109/10915818809014520.Suche in Google Scholar

Karra, S., Rajagopal, K. R. 2011. “Modeling the Non-linear Viscoelastic Response of High Temperature Polyimides.” Mechanics of Materials 43: 54−61. https://doi.org/10.1016/j.mechmat.2010.09.006.Suche in Google Scholar

Katzman, H. A., J. J. Mallon, and W. T. Barry. 1995. “Polyarylacetylene-Matrix Composites for Solid Rocket Motor Components.” Journal of Advanced Materials 26 (3): 21–7, http://doi.org/10.1016/0142-1123(95)98943-w.10.1016/0142-1123(95)98943-WSuche in Google Scholar

Keller, T. M. 1988. “Phthalonitrile-Based High Temperature Resin.” Journal of Polymer Science Part A: Polymer Chemistry 26: 3199−212. https://doi.org/10.1002/pola.1988.080261207.Suche in Google Scholar

Kuepfer, J. and O. Schaefer. 2006. “Organopolysiloxane/polyurea/polyurethane Block Copolymers.” U.S. Patent 7,153,924B2, April 11.Suche in Google Scholar

Laskoski, M., J. S. Clarke, A. Neal, B. G. Harvey, H. L. Ricks-Laskoski, W. J. Hervey, M. N. Daftary, A. R. Shepherd, and T. M. Keller. 2016. “Sustainable High Temperature Phthalonitrile Resins Derived from Resveratrol and Dihydroresveratrol.” ChemistrySelect 1: 3423−7. https://doi.org/10.1002/slct.201600304.Suche in Google Scholar

Li, G., Z. Luo, W. Han, C. Xu, and T. Zhao. 2013. “Preparation and Properties of Novel Hybrid Resins Based on Acetylene-Functional Benzoxazine and Polyvinylsilazane.” Journal of Applied Polymer Science 130: 3794−9. https://doi.org/10.1002/app.39642.Suche in Google Scholar

Li, X., J. Wang, Y. Sun, D. Zhang, N. Zhu, and L. Jing. 2018. “The Effect of Thermal Treatment on the Decomposition of Phthalonitrile Polymer and Phthalonitrile-Polyhedral Oligomeric Silsesquioxane (POSS) Copolymer.” Polymer Degradation and Stability 156: 279–91. https://doi.org/10.1016/j.polymdegradstab.2018.09.012.Suche in Google Scholar

Michael, L. R., W. Richard, E. L. Richard, and E. P. Savitski. 2002. “Thermal Decomposition of Cyanate Ester Resins.” Polymer Degradation and Stability 78 (1): 73–82, http://doi.org/10.1016/S0141-3910(02)00121-0.10.1016/S0141-3910(02)00121-0Suche in Google Scholar

Mittal, K. L. 2009. Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications, Vol. 5. Leiden: CRC Press.10.1163/ej.9789004170803.i-424Suche in Google Scholar

Ramirez, M. L., R. Walters, R. E. Lyon, and E. P. Savitski. 2002. “Thermal Decomposition of Cyanate Ester Resins.” Polymer Degradation and Stability 78: 73−82. https://doi.org/10.1016/s0141-3910(02)00121-0.Suche in Google Scholar

Ren, Z., Y. Cheng, L. Kong, T. Qi, and F. Xiao. 2016. “High Glass Transition Temperature Bismaleimide-Triazine Resins Based on Soluble Amorphous Bismaleimide Monomer.” Journal of Applied Polymer Science 133: 42882. https://doi.org/10.1002/app.42882.Suche in Google Scholar

Shen, Y., Q. Yuan, F. Huang, and L. Du. 2014. “Effect of Neutral Nickel Catalyst on Cure Process of Silicon-Containing Polyarylacetylene.” Thermochimica Acta 590: 66−72. https://doi.org/10.1016/j.tca.2014.06.002.Suche in Google Scholar

Tandon, G. P., Pochiraju, K. V., Schoeppner, G. A. 2008. “Thermo-Oxidative Behavior of High-Temperature PMR-15 Resin and Composites.” Materials Science and Engineering: A 498, 150−61. https://doi.org/10.1016/j.msea.2007.09.103.Suche in Google Scholar

Wang, M. and Y. Ning. 2018. “Oligosilylarylnitrile: the Thermoresistant Thermosetting Resin with High Comprehensive Properties.” ACS Applied Materials & Interfaces 10: 11933–40. https://doi.org/10.1021/acsami.8b00238.Suche in Google Scholar

Wang, M., L. Yang, C. Yu, and C. Xu. 2012. “Liquid Poly(silylacetylene)siloxane Resin as a Novel Precursor of Silicon Carbide and Silicon Oxycarbide Ceramics.” Ceramics International 38 (3): 2449–54. https://doi.org/10.1016/j.ceramint.2011.11.012.Suche in Google Scholar

Yang, J. X., C. J. Huang, P. G. Ren, and M. C. Wang. 2015. “Ceramization, Thermal Cure and Preparation of Liquid Polysilazane Precursor.” Journal of the Chinese Ceramic Society 43 (12): 1692–700.Suche in Google Scholar

Zhang, C. Y., Y. Liu, K. Q. Han, X. F. Chang, and M. H. Yu. 2017. “High Temperature Resistance of Polyborosilazane/Epoxy Resin Curing System.” Materials Science Forum 898, 2294−301. https://doi.org/10.4028/www.scientific.net/msf.898.2294.Suche in Google Scholar

Zhuo, L., K. Kou, P. Yao, G. Wu, and Y. Wang. 2015. “Preparation and Thermal Decomposition Kinetics Research of Pyridine-Containing Polyimide.” Journal of Thermal Analysis and Calorimetry 119 (3): 2039–51. https://doi.org/10.1007/s10973-014-4360-8.Suche in Google Scholar

Received: 2020-10-26
Accepted: 2021-01-26
Published Online: 2021-02-10

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2020-0212/pdf
Button zum nach oben scrollen