Abstract
The melts dissolution characteristics and reaction process during the preparation of Fe-Si alloys by the melts electrochemical method were studied. The thermodynamic calculations and experimental results showed that the solubility of SiO2 in KCl-NaCl-NaF melts was 0.24 mas% at 1073 K. The cyclic voltammetry data showed that the reduction of SiO2 on a Pt electrode was a one-step electron process; when SiO2 accounted for 0.24 mas% of the NaCl-KCl-NaF melts, the Fe-Si alloy was prepared by electrodeposition at 1073 K. When the deposition time was 30 min, Fe3Si was formed.
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 51674120, 51874141), the Natural Science Foundation of Hebei Province (No. E2018209266), and the High School Science and Technology Research Project of Hebei Province (No. BJ2017050).
References
Bieber, A. L., L. Massot, M. Gibilaro, L. Cassayre, P. Chamelot, and P. Taxil. 2011. “Fluoroacidity Evaluation in Molten Salts.” Electrochimica Acta 56: 5022–27.10.1016/j.electacta.2011.03.099Search in Google Scholar
Bieber, A. L., L. Massot, M. Gibilaro, L. Cassayre, P. Taxil, and P. Chamelot. 2012. “Silicon Electrodeposition in Molten Fluorides.” Electrochimica Acta 62: 282–89.10.1016/j.electacta.2011.12.039Search in Google Scholar
Boen, R., and J. Bouteillon. 1983. “The Electrodeposition of Silicon in Fluoride Melts.” Journal of Applied Electrochemistry 13: 277–78.10.1007/BF00941599Search in Google Scholar
Cai, J., X. T. Luo, G. M. Haarberg, O. E. Kongstein, and S. L. Wang. 2012. “Electrorefining of Metallurgical Grade Silicon in Molten CaCl2 Based Salts.” Journal of the Electrochemical Society 159: D155–D158.10.1149/2.041203jesSearch in Google Scholar
Chernenkov, Y. P., N. V. Ershov, V. A. Lukshina, V. I. Fedorov, and B. K. Sokolov. 2007. “An X-ray Diffraction Study of the Short-range Ordering in the Soft-Magnetic Fe-Si Alloys with Induced Magnetic Anisotropy.” Physica B 396: 220–30.10.1016/j.physb.2007.04.008Search in Google Scholar
Cho, S. K., F. R. F. Fan, and A. J. Bard. 2012. “Formation of a Silicon Layer by Electroreduction of SiO 2 Nanoparticles in CaCl 2 Molten Salt.” Electrochimica Acta 65: 57–63.10.1016/j.electacta.2012.01.008Search in Google Scholar
Cohen, U., and R. A. Huggins. 1976. “Silicon Epitaxial Growth by Electrodeposition from Molten Fluorides.” Journal of the Electrochemical Society 123: 381–83.10.1149/1.2132829Search in Google Scholar
Elwell, D., and G. M. Rao. 1982. “Electrochim. Mechanism of Electrodeposition of Silicon from K 2 SiF 6 -flinak.” Acta 27: 673–76.10.1016/0013-4686(82)85058-5Search in Google Scholar
Ergül, E., İ. Karakaya, and M. Erdoğan. 2011. “Electrochemical Decomposition of SiO2 Pellets to Form Silicon in Molten Salts.” Journal of Alloys and Compounds 509: 899–903.10.1016/j.jallcom.2010.09.126Search in Google Scholar
Hiroshi, U., Y. Keisuke, K. Yoshisato, and M. Yoshinao. 2006. “Phase Equilibria and Microstructures in the Fe-Si-Cr-Ti System.” Intermetallics 14: 505–07.10.1016/j.intermet.2005.09.003Search in Google Scholar
Hu, Y. J., X. Wang, J. S. Xiao, J. G. Huo, S. Q. Jiao, and H. M. Zhu. 2013. “Electrochemical Behavior of Silicon(IV) Ion in BaF2-CaF2-SiO2 Melts at 1573K.” Journal of the Electrochemical Society 160: D81–D84.10.1149/2.038303jesSearch in Google Scholar
Jin, X. B., P. Gao, D. H. Wang, X. H. Hu, and G. Z. Chen. 2004. “Electrochemical Preparation of Silicon and Its Alloys from Solid Oxides in Molten Calcium Chloride.” Angewandte Chemie International Edition 43: 733–36.10.1002/anie.200352786Search in Google Scholar
Kang, J. G., N. Lin, Y. Jiang, H. Y. Gao, and Y. H. He. 2017. “Preparation and Corrosion Resistance of Porous Fe-Si Intermetallics.” Materials Science and Engineering of Powder Metallurgy 22: 122–27.Search in Google Scholar
Keisuke, Y., and K. Yoshisato. 2004. “Phase Constitution and Microstructure of the Fe-Si-Cf Ternary Ferritic Alloys.” Scripta Mater 50: 977–81.10.1016/j.scriptamat.2004.01.006Search in Google Scholar
Kongstein, O. E., C. Wollan, S. Sultana, and G. M. Haarberg. 2007. “Electrorefining of Silicon in Molten Calcium Chloride.” ECS Transactions 58: 808–13.10.1149/1.2798679Search in Google Scholar
Kuznetsova, S. V., V. S. Dolmatov, and S. A. Kuznetsov. 2009. “Russ. Voltammetric Study of Electroreduction of Silicon Complexes in a Chloride-fluoride Melt.” Journal of the Electrochemical Society 45: 742–48.10.1134/S1023193509070052Search in Google Scholar
Li, F., H. B. Huang, X. Chen, and D. J. Wang. 2009a. “Mechanical Alloying and Phase Transformation in Fe-Si Alloy.” Journal of Southeast University 25: 404–07.Search in Google Scholar
Li, M., T. T. Sun, W. Han, S. S. Wang, M. L. Zhang, Y. D. Yan, and M. Zhang. 2015. “Electrochemical Preparation of Ho-Ni Intermetallic Compounds in LiCl-KCl Eutectic Melts.” Chinese Journal of Inorganic Chemistry 31: 177–82.Search in Google Scholar
Li, X. N., D. Nie, C. Dong, T. C. Ma, X. Jin, and Z. Zhang. 2002. “Microstructure of β-FeSi2 Film Synthesized by Ion Implantation.” Acta Physica Sinica 51: 123–24.Search in Google Scholar
Li, Y. G., J. L. Liang, H. Li, G. Z. Tang, and W. Tian. 2009b. “Character of Fe-Si Transition Gradient Layer Generated on Surface of 6.5%si Steel Sheet by Siliconizing.” The Chinese Journal of Nonferrous Metals 19: 714–19.Search in Google Scholar
Massalski, T. B., H. Okamoto, P. R. Subramanian, et al., ed. 1990. Binary Alloy Phase Diagrams, vol. 1–2, Second. OH: American-Society for Metals Park.Search in Google Scholar
Matsumura, S., Y. Tanaka, Y. Koga, K. Oki, et al. 2001. “Concurrent Ordering and Phase Separation in the Vicinity of the Metastable Critical Point O F Order-disorder Transition in Fe-Si Alloys.” Materials Science and Engineering A 312: 284–92.10.1016/S0921-5093(00)01874-8Search in Google Scholar
Mattei, R. C. D., D. Elwell, and R. S. Feigelson. 1981. “Electrodeposition of Silicon at Temperatures above Its Melting Point.” Journal of the Electrochemical Society 12: 1712–14.10.1149/1.2127716Search in Google Scholar
Meco, H., and R. E. Napolitano. 2005. “Liquidus and Solidus Boundaries in the Vicinity of Order-disorder Transitions in the Fe-Si System.” Scripta Mater 52: 221–26.10.1016/j.scriptamat.2004.09.026Search in Google Scholar
Nohira, T., K. Yasuda, and Y. Ito. 2003. “Pinpoint and Bulk Electrochemical Reduction of Insulating Silicondioxide to Silicon.” Nature Materials 2: 397–401.10.1038/nmat900Search in Google Scholar PubMed
Oishi, T., M. Watanabe, K. Koyama, M. Tanaka, and K. Saegusa. 2011. “Process for Solar Grade Silicon Production by Molten Salt Electrolysis Using Aluminum-Silicon Liquid Alloy.” Journal of the Electrochemical Society 158: E93–E99.10.1149/1.3605720Search in Google Scholar
Rao, G. M., D. Elwell, and R. S. Feigelson. 1980. “Electrowinning of Silicon from k 2sif6- molten Fluoride Systems.” Journal of the Electrochemical Society 127: 1940–44.10.1149/1.2130041Search in Google Scholar
Ruiz, D., T. Ros-Yanez, R. E. Vandenberghe, E. De Grave, M. De Wulf, and Y. Houbaert. 2003. “Magnetic Properties of High Si Steel with Variable Ordering Obtained through Thermo Mechanical Processing.” Journal of Applied Physics 93: 7112–14.10.1063/1.1558196Search in Google Scholar
Ruiz, D., T. Ros-Yanez, R. E. Vandenberghe, and Y. Houvaert. 2005. “Influence of Atomic Order on Magnetic Properties of Fe-Si Alloys.” Journal of Magnetism and Magnetic Materials s290–291: 1423–26.10.1016/j.jmmm.2004.11.496Search in Google Scholar
Villars, P., and L. D. Calvert. 1991. Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 3373. Mater. Park.Search in Google Scholar
Wang, H. R., X. Y. Teng, Z. Q. Shi, Y. F. Ye, and G. H. Min. 2001. “Structure of A2 Phase of Fe-Si Binary System and Its Electron Theory Analysis.” The Chinese Journal of Nonferrous Metals S2: 253–56.Search in Google Scholar
Weng, W., M. Wang, X. Gong, Z. Wang, D. Wang, and Z. Guo. 2017. “Electrochemical Reduction Behavior of Soluble CaTiO3 in Na3AlF6-AlF3 Melt for the Preparation of Metal Titanium.” Journal of the Electrochemical Society 164: D551–D557.10.1149/2.0611709jesSearch in Google Scholar
Xiao, W., X. B. Jin, Y. Deng, D. H. Wang, X. H. Hu, and G. Z. Chen. 2006. “Electrochemically Driven Three-Phase Interlines into Insulator Compounds: Electroreduction of Solid SiO2 in Molten CaCl2.” ChemPhysChem 7: 1750–58.10.1002/cphc.200600149Search in Google Scholar PubMed
Xue, J. Q., N. N. Liu, W. Huang, C. B. Tang, and N. J Xu. 2016. “Study on Corrosion Resistance Properties of Alloying Fe3Si Layer Prepared on Steels in Molten Salt.” Hot Working Technology 45: 164–66.Search in Google Scholar
Yan, W. J., Q. Xie, J. M. Zhang, Q. Q. Xiao, Y. Liang, and W. X. Zeng. 2007. “Interband Optical Transitions in Semiconducting Iron Disilicide β-FeSi2.” Journal of Semiconductors 28: 1381–87.Search in Google Scholar
Yasuda, K., T. Nohira, R. Hagiwara, and Y. H. Ogata. 2007. “Direct Electrolytic Reduction of Solid SiO2 in Molten CaCl2 for the Production of Solar Grade Silicon.” Electrochimica Acta 53: 106–10.10.1016/j.electacta.2007.01.024Search in Google Scholar
Yu, J. Q., W. Z. Yi, and B. D. Chen. 1987. Handbook of Binary Alloy Phase Diagrams, 375. Shanghai: Shanghai Sci. Techno. Press.Search in Google Scholar
Yuan, W. J., J. G. Li, Q. Shen, and L. M. Zhang. 2008. “A Study on Magnetic Properties of High Si Steel Obtained through Powder Rolling Processing.” Journal of Magnetism and Magnetic Materials 320: 76–80.10.1016/j.jmmm.2007.05.008Search in Google Scholar
Zhang, L., J. Wu, J. Zhu, Q. L. Hao, Z. Qin, S. H. Cong, D. F. Zhan, and D. J. Feng. 2014. “Influence of High-Silicon FeSi Alloy Coatings on the Magnetic Properties of the Common Grain-oriented Silicon Steel.” Surface Technology 43: 48–53.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Articles
- Effect of Ni Reducibility on Anisole Hydrodeoxygenation Activity in the La-Ni/γ-Al2O3 Catalytic System
- Electrochemical Mechanism for the Preparation of Fe-Si Alloys by Melts Electrodeposition
- NOx reduction by CO over Fe/ZSM-5: A comparative study of different preparation techniques
- Investigation of Hydrodynamic and Heat Transfer Characteristics of Gas-liquid Taylor flow in Square Microchannel
- Modeling of Non-Newtonian Flow in an Inverted Cone Foam Breaker
- Numerical Investigations of a Passive Micromixer Based on Minkowski Fractal Principle
- Magnetic Multi-walled Carbon Nanotube as Effective Adsorbent for Ciprofloxacin (CIP) Removal from Aqueous Solutions: Isotherm and Kinetics Studies
- Synthesis and Characterization of N- Doped ZnO-γAl2O3 Nanoparticles for Photo-catalytic Application
- Intensified Photocatalytic Degradation of Solophenyl Scarlet BNLE in Simulated Textile Effluents Using TiO2 Supported on Cellulosic Tissue
- Hetero-structured Iron Molybdate Nanoparticles: Synthesis, Characterization and Photocatalytic Application
Articles in the same Issue
- Articles
- Effect of Ni Reducibility on Anisole Hydrodeoxygenation Activity in the La-Ni/γ-Al2O3 Catalytic System
- Electrochemical Mechanism for the Preparation of Fe-Si Alloys by Melts Electrodeposition
- NOx reduction by CO over Fe/ZSM-5: A comparative study of different preparation techniques
- Investigation of Hydrodynamic and Heat Transfer Characteristics of Gas-liquid Taylor flow in Square Microchannel
- Modeling of Non-Newtonian Flow in an Inverted Cone Foam Breaker
- Numerical Investigations of a Passive Micromixer Based on Minkowski Fractal Principle
- Magnetic Multi-walled Carbon Nanotube as Effective Adsorbent for Ciprofloxacin (CIP) Removal from Aqueous Solutions: Isotherm and Kinetics Studies
- Synthesis and Characterization of N- Doped ZnO-γAl2O3 Nanoparticles for Photo-catalytic Application
- Intensified Photocatalytic Degradation of Solophenyl Scarlet BNLE in Simulated Textile Effluents Using TiO2 Supported on Cellulosic Tissue
- Hetero-structured Iron Molybdate Nanoparticles: Synthesis, Characterization and Photocatalytic Application