Startseite Experimental Study on Bubble Size Distribution in Gas-Liquid Reversed Jet Loop Reactor
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Experimental Study on Bubble Size Distribution in Gas-Liquid Reversed Jet Loop Reactor

  • Rongshan Bi ORCID logo EMAIL logo , Jiao Tang , Linxi Wang , Qingqing Yang , Meilan Zuo , Chen Chen und Shuguang Xiang EMAIL logo
Veröffentlicht/Copyright: 30. Oktober 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Bubble size distribution (BSD) is important for gas-liquid jet loop reactor (JLR)’s mass transfer performance of inter-phases. A self-designed reversed JLR was investigated with air-water system on the BSD. The CCD camera of particle imaging velocimetry (PIV) system and image processing technique were used to obtain the reliable photo. The influences of four parameters, gas phase flow rate, liquid phase flow rate, draft tube diameter and ejector mounting position, on the BSD were studied in detail. The results showed that the local BSD is accordance with log-normal distribution under the experimental conditions and the average diameter and BSD range increase with the increase of the gas phase flow rate, and decrease with the increase of the liquid phase flow rate, the downward movement of the nozzle installation position and the increase of the diameter of the draft tube.

References

Behin, J. 2012. “Deinking in Bubble Column and Airlift Reactors: Influence of Wastewater of Merox Unit as Pulping Liquor.” Chemical Engineering Research and Design 90 (8): 1045–51.10.1016/j.cherd.2011.10.021Suche in Google Scholar

Behr, A., M. Becker, and J. Dostal. 2009. “Bubble-size Distributions and Interfacial Areas in a Jetloop Reactor for Multiphase Catalysis.” Chemical Engineering Science 64 (12): 2934–40.10.1016/j.ces.2009.03.031Suche in Google Scholar

Chao, Y., M. Mitarai, Y. Sugano, and M. Shoda. 2001. “Effect of Addition of Water-Soluble Polysaccharides on Bacterial Cellulose Production in a 50-L Airlift Reactor.” Biotechnology Progress 17: 781–85.10.1021/bp010046bSuche in Google Scholar

Chao, Y., Y. Sugano, and M. Shoda. 2001. “Bacterial Cellulose Production under Oxygen-Enriched Air at Different Fructose Concentrations in a 50-Liter, Internal-Loop Airlift Reactor.” Applied Microbiology and Biotechnology 55 (6): 673–79.10.1007/s002530000503Suche in Google Scholar

Dagaonkar, M. V., H. J. Heeres, A. A. C. M. Beenackers, and V. G. Pangarkar. 2002. “Investigation of Enhanced Gas Absorption by Adsorptive Bucky Balls in a Multiphase Slurry Reactor in the Presence and Absence of Ultrasound.” Industrial & Engineering Chemistry Research 41 (6): 1496–503.10.1021/ie010628ySuche in Google Scholar

Dan, L., G. Kai, J. Li, Y. Huang, J. Zhou, L. Hui, and C. J. C. J. o. C. E. Liu. 2018. “Hydrodynamics and Bubble Behaviour in a Three-Phase Two-Stage Internal Loop Airlift Reactor.” Chinese Journal of Chemical Engineering 26 (6): 1359–69.10.1016/j.cjche.2018.03.020Suche in Google Scholar

Delnoij, E., J. A. M. Kuipers, W. P. M. V. Swaaij, and J. Westerweel. 2000. “Measurement of Gas-liquid Two-phase Flow in Bubble Columns Using Ensemble Correlation PIV.” Chemical Engineering Science 55: 3385–95.10.1016/S0009-2509(99)00595-3Suche in Google Scholar

Deng, Z., T. Wang, N. Zhang, and Z. Wang. 2010. “Gas Holdup, Bubble Behavior and Mass Transfer in a 5m High Internal-loop Airlift Reactor with non-Newtonian Fluid.” Chemical Engineering Journal 160 (2): 729–37.10.1016/j.cej.2010.03.078Suche in Google Scholar

Fadavi, A., and Y. Chisti. 2007. “Gas Holdup and Mixing Characteristics of a Novel Forced Circulation Loop Reactor.” Chemical Engineering Journal 131 (1–3): 105–11.10.1016/j.cej.2006.12.037Suche in Google Scholar

Fadavi, A., Y. Chisti, and L. Chriaštel. 2008. “Bubble Size in a Forced Circulation Loop Reactor.” Journal of Chemical Technology & Biotechnology 83 (1): 105–08.10.1002/jctb.1766Suche in Google Scholar

Fu, C. C., L. S. Fan, and W. T. Wu. 2007. “Flow Regime Transitions in an Internal-Loop Airlift Reactor.” Chemical Engineering & Technology 30(8): 1077–82.10.1002/ceat.200700017Suche in Google Scholar

Gadallah, A. H., and K. Siddiqui. 2015. “Bubble Breakup in Co-Current Upward Flowing Liquid Using Honeycomb Monolith Breaker.” Chemical Engineering Science 131: 22–40.10.1016/j.ces.2015.03.028Suche in Google Scholar

Han, M., G. González, M. Vauhkonen, A. Laari, and T. Koiranen. 2017. “Local Gas Distribution and Mass Transfer Characteristics in an Annulus-Rising Airlift Reactor with Non-Newtonian Fluid.” Chemical Engineering Journal 308: 929–39.10.1016/j.cej.2016.09.102Suche in Google Scholar

Honkanen, M., H. Eloranta, and P. J. F. M. Saarenrinne. 2010. “Instrumentation, Digital Imaging Measurement of Dense Multiphase Flows in Industrial Processes.” Flow Measurement and Instrumentation 21 (1): 25–32.10.1016/j.flowmeasinst.2009.11.001Suche in Google Scholar

Jamshidi, A. M., M. Sohrabi, F. Vahabzadeh, and B. Bonakdarpour. 2001. “Studies on the Hydrodynamic Behavior and Mass Transfer in a Down-Flow Jet Loop Reactor with a Coaxial Draft Tube.” Journal of Chemical Technology and Biotechnology 76: 39–46.10.1002/1097-4660(200101)76:1<39::AID-JCTB331>3.0.CO;2-8Suche in Google Scholar

Kitagawa, A., K. Hishida, and Y. Kodama. 2005. “Flow Structure of Microbubble-Laden Turbulent Channel Flow Measured by PIV Combined with the Shadow Image Technique.” Experiments in Fluids 38 (4): 466–75.10.1007/s00348-004-0926-8Suche in Google Scholar

Konsowa, A. H. 2010. “Intensification of the Rate of Heavy Metal Removal from Wastewater by Cementation in a Jet Reactor.” Desalination 254 (1–3): 29–34.10.1016/j.desal.2009.12.018Suche in Google Scholar

Lindken, R., and W. Merzkirch. 2002. “A Novel PIV Technique for Measurements in Multiphase Flows and Its Application to Two-Phase Bubbly Flows.” Experiments in Fluids 33 (6): 814–25.10.1007/s00348-002-0500-1Suche in Google Scholar

Majumder, S. K., G. Kundu, and D. Mukherjee. 2006. “Bubble Size Distribution and Gas–Liquid Interfacial Area in a Modified Downflow Bubble Column.” Chemical Engineering Journal 122 (1–2): 1–10.10.1016/j.cej.2006.04.007Suche in Google Scholar

Melo, P. A., J. C. Pinto, and Jr, E. C. Biscaia. 2001. “Characterization of the Residence Time Distribution in Loop Reactors.” Chemical Engineering Science 56: 2703–13.10.1016/S0009-2509(00)00517-0Suche in Google Scholar

Mena, P., M.-N. Pons, J. Teixeira, and F. J. C. E. S. Rocha. 2005. “Using Image Analysis in the Study of Multiphase Gas Absorption.” Chemical Engineering Science 60 (18): 5144–50.10.1016/j.ces.2005.04.049Suche in Google Scholar

Park, B., G. Hwang, S. Haam, C. Lee, I. S. Ahn, and K. Lee. 2008. “Absorption of a Volatile Organic Compound by a Jet Loop Reactor with Circulation of a Surfactant Solution: Performance Evaluation.” Journal of Hazardous Materials 153 (1–2): 735–41.10.1016/j.jhazmat.2007.09.016Suche in Google Scholar

Pohorecki, R., W. Moniuk, P. Bielski, and A. J. C. E. S. Zdrójkowski. 2001. “Modelling of the Coalescence/Redispersion Processes in Bubble Columns.” Chemical Engineering Science 56 (21–22): 6157–64.10.1016/S0009-2509(01)00214-7Suche in Google Scholar

Poissonnier, Jeroen, J. W. Thybaut, and G. B. Marin. 2017. “Large-Scale Exploitation of Bimodal Reaction Sequences Including Degradation: Comparison of Jet Loop and Trickle Bed Reactors.” Industrial & Engineering Chemistry Research 56: 14192–99.10.1021/acs.iecr.7b03226Suche in Google Scholar

Prasad, K. Y., T. K. Ramanujam, and Gas Holdup. 1995. “Overall Volumetric Mass Transfer Coefficient in a Modified Reversed Flow Jet Loop Reactor.” Canadian Journal of Chemical Engineering 73: 190–95.10.1002/cjce.5450730204Suche in Google Scholar

Rajan, S., M. Kumar, M. J. Ansari, D. P. Rao, and N. Kaistha. 2011. “Limiting Gas Liquid Flows and Mass Transfer in a Novel Rotating Packed Bed (higee).” Industrial & Engineering Chemistry Research 50 (2): 986–97.10.1021/ie100899rSuche in Google Scholar

Ramezani, M., M. J. Legg, A. Haghighat, Z. Li, R. D. Vigil, and M. G. Olsen. 2017. “Experimental Investigation of the Effect of Ethyl Alcohol Surfactant on Oxygen Mass Transfer and Bubble Size Distribution in an Air-Water Multiphase Taylor-Couette Vortex Bioreactor.” Chemical Engineering Journal 319: 288–96.10.1016/j.cej.2017.03.005Suche in Google Scholar

Schäfer, R., C. Merten, G. J. E. T. Eigenberger, and F. Science. 2002. “Bubble Size Distributions in a Bubble Column Reactor under Industrial Conditions.” Experimental Thermal and Fluid Science 26 (6–7): 595–604.10.1016/S0894-1777(02)00189-9Suche in Google Scholar

Tang, C., and T. J. Heindel. 2006. “Estimating Gas Holdup via Pressure Difference Measurements in a Cocurrent Bubble Column.” International Journal of Multiphase Flow 32 (7): 850–63.10.1016/j.ijmultiphaseflow.2006.02.008Suche in Google Scholar

Wagh, S. M., K. V. Koranne, R. B. Mankar, and R. L. Sonolikar. 2010. “Gas Holdup in a Two-phase Reversed Flow Jet Loop Reactor.” Canadian Journal of Chemical Engineering 88 (5): 793–800.Suche in Google Scholar

Wang, T., J. Wang, W. Yang, and Y. J. C. E. J. Jin. 2001. “Bubble Behavior in Gas–Liquid–Solid Three-Phase Circulating Fluidized Beds.” Chemical Engineering Journal 84 (3): 397–404.10.1016/S1385-8947(01)00129-2Suche in Google Scholar

Wbrnecke, H.-J. 1989. “Macromixing Characteristics of Gas-Liquid Jet Loop Reactors.” Acta Biotechnol 9: 111–21.10.1002/abio.370090204Suche in Google Scholar

Wongsuchoto, P. 2003. “Bubble Size Distribution and Gas–Liquid Mass Transfer in Airlift Contactors.” Chemical Engineering Journal 92 (1–3): 81–90.10.1016/S1385-8947(02)00122-5Suche in Google Scholar

Yongxiang, G., H. Du, L. Haoran, C. Youwei, W. Lijun, and L. Xi. 2018. “Gas Holdup and Liquid Velocity Distribution in the up Flow Jet-Loop Reactor.” Chemical Engineering Research and Design 136: 94–104.10.1016/j.cherd.2018.05.005Suche in Google Scholar

Yongxiang, G., H. Du, C. Youwei, W. Lijun, and L. Xi. 2019a. “CFD Simulation for up Flow Jet-Loop Reactors by Use of Bi-Dispersed Bubble Model.” Chemical Engineering Research and Design 141: 66–83.10.1016/j.cherd.2018.10.035Suche in Google Scholar

Yongxiang, G., G. Xi, H. Du, C. Youwei, W. Lijun, and Xi Li. 2019b. “Experimental Investigation on Multiscale Hydrodynamics in a Novel Gas-Liquid-Solid Three Phase Jet-Loop Reactor.” AIChE Journal e16537.Suche in Google Scholar

Zhang, K., N. Qi, J. Jin, C. Lu, and H. J. F. Zhang. 2010. “Gas Holdup and Bubble Dynamics in a Three-phase Internal Loop Reactor with External Slurry Circulation.” Fuel 89 (7): 1361–69.10.1016/j.fuel.2009.09.009Suche in Google Scholar

Received: 2019-05-20
Revised: 2019-09-03
Accepted: 2019-10-08
Published Online: 2019-10-30

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2019-0102/pdf?lang=de
Button zum nach oben scrollen