Home Effect of Ni Reducibility on Anisole Hydrodeoxygenation Activity in the La-Ni/γ-Al2O3 Catalytic System
Article
Licensed
Unlicensed Requires Authentication

Effect of Ni Reducibility on Anisole Hydrodeoxygenation Activity in the La-Ni/γ-Al2O3 Catalytic System

  • Brett Pomeroy , Teri Doxtator , Jose E. Herrera and Dominic Pjontek ORCID logo EMAIL logo
Published/Copyright: December 4, 2019

Abstract

The effect of lanthanum addition on the activity of a series of Ni/γ-Al2O3 catalysts for anisole hydrodeoxygenation (HDO) was evaluated. Catalyst characterization using hydrogen temperature-programmed reduction (H2-TPR) and UV-visible spectroscopy suggests that lanthanum incorporation results in the formation of larger metallic Ni domains in the catalyst surface, which in turn favour the direct anisole hydrogenation pathway to methoxycyclohexane. Despite the improvements to reducibility that resulted from the incorporation of La, the catalysts displayed lower selectivity towards cyclohexane, independent of total nickel loading. The catalytic activity results were rationalized in terms of a proposed reaction pathway where anisole is initially hydrogenated followed by sequential deoxygenation steps.

Award Identifier / Grant number: RGPIN-2015-06314

Funding statement: This work was supported by the Natural Sciences and Engineering Research Council of Canada (Funder Id: http://doi.org/10.13039/501100000038, Grant Number: RGPIN-2015-06314)

Acknowledgements

The authors would like to acknowledge the Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Faculty of Engineering at the University of Western Ontario for financial support of this study.

References

Alberton, A. L., M. M. V. M. Souza, and M. Schmal. 2007. “Carbon Formation and its Influence on Ethanol Steam Reforming over Ni/Al2O3 Catalysts.” Catalysis Today 123: 257–64. https://doi.org/10.1016/j.cattod.2007.01.062.10.1016/j.cattod.2007.01.062Search in Google Scholar

Al-Fatesh, A. S., M. A. Naeem, A. H. Fakeeha, and A. E. Abasaeed. 2014. “Role of La2O3 as Promoter and Support in Ni/γ-Al2O3 Catalysts for Dry Reforming of Methane.” Chinese Journal of Chemical Physics 22: 28–37. https://doi.org/10.1016/S1004-9541(14)60029-X.10.1016/S1004-9541(14)60029-XSearch in Google Scholar

Alonso, D. M., J. Q. Bond, and J. A. Dumesic. 2010. “Catalytic Conversion of Biomass to Biofuels.” Green Chemistry 12: 1493. https://doi.org/10.1039/c004654j.10.1039/c004654jSearch in Google Scholar

Ardiyanti, A. R., S. A. Khromova, R. H. Venderbosch, V. A. Yakovlev, and H. J. Heeres. 2012. “Catalytic Hydrotreatment of Fast-Pyrolysis Oil Using Non-Sulfided Bimetallic Ni-Cu Catalysts on a δ-Al2O3 Support.” Applied Catalysis B: Environmental 117–118: 105–17. https://doi.org/10.1016/j.apcatb.2011.12.032.10.1016/j.apcatb.2011.12.032Search in Google Scholar

Bykova, M. V., O. A. Bulavchenko, D. Y. Ermakov, M. Y. Lebedev, V. A. Yakovlev, and V. N. Parmon. 2011. “Guaiacol Hydrodeoxygenation in the Presence of Ni-containing Catalysts.” Catalysis in Industry 3: 15–22. https://doi.org/10.1134/S2070050411010028.10.1134/S2070050411010028Search in Google Scholar

Centeno, A., E. Laurent, and B. Delmon. 1995. “Influence of the Support of CoMo Sulfide Catalysts and of the Addition of Potassium and Platinum on the Catalytic Performances for the Hydrodeoxygenation of Carbonyl, Carboxyl, and Guaiacol-Type Molecules.” Journal of Catalysis 154: 288–98. https://doi.org/10.1006/jcat.1995.1170.10.1006/jcat.1995.1170Search in Google Scholar

Deraz, N. M., M. M. Selim, and M. Ramadan. 2009. “Processing and Properties of Nanocrystalline Ni and NiO Catalysts.” Materials Chemistry and Physics 113: 269–75. https://doi.org/10.1016/j.matchemphys.2008.07.021.10.1016/j.matchemphys.2008.07.021Search in Google Scholar

Furimsky, E. 2000. “Catalytic Hydrodeoxygenation.” Applied Catalysis A: General 199: 147–90. https://doi.org/10.1016/S0926-860X(99)00555-4.10.1016/S0926-860X(99)00555-4Search in Google Scholar

Gac, W. 2011. “Acid–base Properties of Ni–MgO–Al2O3 Materials.” Applied Surface Science 257: 2875–80. https://doi.org/10.1016/j.apsusc.2010.10.084.10.1016/j.apsusc.2010.10.084Search in Google Scholar

Garbarino, G., C. Wang, I. Valsamakis, S. Chitsazan, P. Riani, E. Finocchio, M. Flytzani-Stephanopoulos, and G. Busca. 2015. “A Study of Ni/Al2O3 and Ni-La/Al2O3 Catalysts for the Steam Reforming of Ethanol and Phenol.” Applied Catalysis B: Environmental 174–175: 21–34.10.1016/j.apcatb.2015.02.024Search in Google Scholar

Gevert, B. S., J.- E. Otterstedt, and F. E. Massoth. 1987. “Kinetics of the HDO of Methyl-substituted Phenols.” Applied Catalysis 31: 119–31. https://doi.org/10.1016/S0166-9834(00)80671-5.10.1016/S0166-9834(00)80671-5Search in Google Scholar

Ginsburg, J., J. Pina, T. Solh, and H. Lasa. 2005. “Coke Formation over a Nickel Catalyst under Methane Dry Reforming Conditions: Thermodynamic and Kinetic Models.” Industrial and Engineering Chemistry Research 44: 4846–54.10.1021/ie0496333Search in Google Scholar

Guisnet, M., and P. Magnoux. 2001. “Organic Chemistry of Coke Formation.” Applied Catalysis A: General 212: 83–96. https://doi.org/10.1016/S0926-860X(00)00845-0.10.1016/S0926-860X(00)00845-0Search in Google Scholar

He, Z., and X. Wang. 2012. “Hydrodeoxygenation of Model Compounds and Catalytic Systems for Pyrolysis Bio-Oils Upgrading.” Catalysis for Sustainable Energy Versita 1: 28–52. https://doi.org/10.2478/cse-2012-0004.10.2478/cse-2012-0004Search in Google Scholar

Hossain, M. M., D. Lopez, J. Herrera, and H. I. de Lasa. 2009. “Nickel on Lanthanum-modified Gamma- Al2O3 Oxygen Carrier for CLC: Reactivity and Stability.” Catalysis Today 143: 179–86. https://doi.org/10.1016/j.cattod.2008.09.006.10.1016/j.cattod.2008.09.006Search in Google Scholar

Jeangros, Q., T. W. Hansen, J. B. Wagner, C. D. Damsgaard, R. E. Dunin-Borkowski, C. Hébert, J. Van Herle, and A. Hessler-Wyser. 2013. “Reduction of Nickel Oxide Particles by Hydrogen Studied in an Environmental TEM.” Journal of Materials Science 48: 2893–907. https://doi.org/10.1007/s10853-012-7001-2.10.1007/s10853-012-7001-2Search in Google Scholar

Jin, S., Z. Xiao, C. Li, X. Chen, L. Wang, J. Xing, W. Li, and C. Liang. 2014. “Catalytic Hydrodeoxygenation of Anisole as Lignin Model Compound over Supported Nickel Catalysts.” Catalysis Today 234: 125–32. https://doi.org/10.1016/j.cattod.2014.02.014.10.1016/j.cattod.2014.02.014Search in Google Scholar

Khromova, S. A., A. A. Smirnov, O. A. Bulavchenko, A. A. Saraev, V. V. Kaichev, S. I. Reshetnikov, and V. A. Yakovlev. 2014. “Anisole Hydrodeoxygenation over Ni-Cu Bimetallic Catalysts: The Effect of Ni/Cu Ratio on Selectivity.” Applied Catalysis A: General 470: 261–70. https://doi.org/10.1016/j.apcata.2013.10.046.10.1016/j.apcata.2013.10.046Search in Google Scholar

Kim, H. W., K. M. Kang, H. Y. Kwak, and J. H. Kim. 2011. “Preparation of Supported Ni Catalysts on Various Metal Oxides with core/shell Structures and Their Tests for the Steam Reforming of Methane.” Chemical Engineering Journal 168: 775–83. https://doi.org/10.1016/j.cej.2010.11.045.10.1016/j.cej.2010.11.045Search in Google Scholar

Kirumakki, S. R., B. G. Shpeizer, G. V. Sagar, K. V. R. Chary, and A. Clearfield. 2006. “Hydrogenation of Naphthalene over NiO/SiO2-Al2O3 Catalysts: Structure-Activity Correlation.” Journal of Catalysis 242: 319–31. https://doi.org/10.1016/j.jcat.2006.06.014.10.1016/j.jcat.2006.06.014Search in Google Scholar

Latifi, M., F. Berruti, and C. Briens. 2015. “Thermal and Catalytic Gasification of Bio-Oils in the Jiggle Bed Reactor for Syngas Production.” International Journal of Hydrogen Energy 40: 5856–68. https://doi.org/10.1016/j.ijhydene.2015.02.088.10.1016/j.ijhydene.2015.02.088Search in Google Scholar

Lee, W. S., Z. Wang, R. J. Wu, and A. Bhan. 2014. “Selective Vapor-Phase Hydrodeoxygenation of Anisole to Benzene on Molybdenum Carbide Catalysts.” Journal of Catalysis 319: 44–53. https://doi.org/10.1016/j.jcat.2014.07.025.10.1016/j.jcat.2014.07.025Search in Google Scholar

Marecot, P., H. Martinez, and J. Barbier. 1992. “Coking Reaction by Anthracene on Acidic Aluminas and Silica-Aluminas.” Journal of Catalysis 138: 474–81.10.1016/0021-9517(92)90299-WSearch in Google Scholar

Mazumder, J., and H. de Lasa. 2014a. “Fluidizable Ni/La2O3-γAl2O3 Catalyst for Steam Gasification of a Cellulosic Biomass Surrogate.” Applied Catalysis B: Environmental 160–161: 67–79. https://doi.org/10.1016/j.apcatb.2014.04.042.10.1016/j.apcatb.2014.04.042Search in Google Scholar

Mazumder, J., and H. I. de Lasa. 2014b. “Ni Catalysts for Steam Gasification of Biomass: Effect of La2O3 Loading.” Catalysis Today 237: 100–10. https://doi.org/10.1016/J.CATTOD.2014.02.015.10.1016/j.cattod.2014.02.015Search in Google Scholar

Mohan, D., C. U. Pittman, and P. H. Steele. 2006. “Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review.” Energy and Fuels 20: 848–89. https://doi.org/10.1021/ef0502397.10.1021/ef0502397Search in Google Scholar

Molina, R., and G. Poncelet. 1998. “α-Alumina-Supported Nickel Catalysts Prepared from Nickel Acetylacetonate: A TPR Study.” Journal of Catalysis 173: 257–67. https://doi.org/10.1006/jcat.1997.1931.10.1006/jcat.1997.1931Search in Google Scholar

Montini, T., R. Singh, P. Das, B. Lorenzut, N. Bertero, P. Riello, A. Benedetti, et al. 2010. “Renewable H2 from Glycerol Steam Reforming: Effect of La2O3 and CeO2 Addition to Pt/Al2O3 Catalysts.” ChemSusChem 3: 619–28. https://doi.org/10.1002/cssc.200900243.10.1002/cssc.200900243Search in Google Scholar

Mortensen, P. M., J.- D. Grunwaldt, P. A. Jensen, K. G. Knudsen, and A. D. Jensen. 2011. “A Review of Catalytic Upgrading of Bio-Oil to Engine Fuels.” Applied Catalysis A: General 407: 1–19. https://doi.org/10.1016/j.apcata.2011.08.046.10.1016/j.apcata.2011.08.046Search in Google Scholar

Ogawa, Y., M. Toba, and Y. Yoshimura. 2003. “Effect of Lanthanum Promotion on the Structural and Catalytic Properties of Nickel-Molybdenum/Alumina Catalysts.” Applied Catalysis A: General 246: 213–25. https://doi.org/10.1016/S0926-860X(03)00049-8.10.1016/S0926-860X(03)00049-8Search in Google Scholar

Osorio-Vargas, P., N. A. Flores-González, R. M. Navarro, J. L. G. Fierro, C. H. Campos, and P. Reyes. 2016. “Improved Stability of Ni/Al2O3 Catalysts by Effect of Promoters (La2O3, CeO2) for Ethanol Steam-reforming Reaction.” Catalysis Today 259: 27–38. https://doi.org/10.1016/J.CATTOD.2015.04.037.10.1016/j.cattod.2015.04.037Search in Google Scholar

Richardson, J. T., R. Scates, and M. V. Twigg. 2003. “X-ray Diffraction Study of Nickel Oxide Reduction by Hydrogen.” Applied Catalysis A: General 246: 137–50. https://doi.org/10.1016/S0926-860X(02)00669-5.10.1016/S0926-860X(02)00669-5Search in Google Scholar

Rivero-Mendoza, D., J. Stanley, J. Scott, and K.- F. Aguey-Zinsou. 2016. “An Alumina-Supported Ni-La-Based Catalyst for Producing Synthetic Natural Gas.” Catalysts 6: 170. https://doi.org/10.3390/catal6110170.Search in Google Scholar

Robinson, A. M., J. E. Hensley, and J. Will Medlin. 2016. “Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review.” ACS Catalysis 6: 5026–43. https://doi.org/10.1021/acscatal.6b00923.10.1021/acscatal.6b00923Search in Google Scholar

Rynkowski, J. M., T. Paryjczak, and M. Lenik. 1993. “On the Nature of Oxidic Nickel Phases in NiO/γ-Al2O3 Catalysts.” Applied Catalysis A: General 106: 73–82. https://doi.org/10.1016/0926-860X(93)80156-K.10.1016/0926-860X(93)80156-KSearch in Google Scholar

Sánchez-Sánchez, M. C., R. M. Navarro, and J. L. G. Fierro. 2007. “Ethanol Steam Reforming over Ni/La-Al2O3 Catalysts: Influence of Lanthanum Loading.” Catalysis Today 129: 336–45. https://doi.org/10.1016/j.cattod.2006.10.013.10.1016/j.cattod.2006.10.013Search in Google Scholar

Sankaranarayanan, T. M., A. Berenguer, C. Ochoa-Hernández, I. Moreno, P. Jana, J. M. Coronado, D. P. Serrano, and P. Pizarro. 2015. “Hydrodeoxygenation of Anisole as Bio-Oil Model Compound over Supported Ni and Co Catalysts: Effect of Metal and Support Properties.” Catalysis Today 243: 163–72. https://doi.org/10.1016/j.cattod.2014.09.004.10.1016/j.cattod.2014.09.004Search in Google Scholar

Skoufa, Z., G. Xantri, E. Heracleous, and A. A. Lemonidou. 2014. “A Study of Ni–Al–O Mixed Oxides as Catalysts for the Oxidative Conversion of Ethane to Ethylene.” Applied Catalysis A: General 471: 107–17. https://doi.org/10.1016/J.APCATA.2013.11.042.10.1016/j.apcata.2013.11.042Search in Google Scholar

Smirnov, A. A., S. A. Khromova, O. A. Bulavchenko, V. V. Kaichev, A. A. Saraev, S. I. Reshetnikov, M. V. Bykova, L. I. Trusov, and V. A. Yakovlev. 2014. “Effect of the Ni/Cu Ratio on the Composition and Catalytic Properties of Nickel-Copper Alloy in Anisole Hydrodeoxygenation.” Kinetics and Catalysis 55: 69–78. https://doi.org/10.1134/S0023158414010145.10.1134/S0023158414010145Search in Google Scholar

Stanislaus, A., M. Absi-Halabi, and K. Al-Doloma. 1988. “Effect of Phosphorus on the Acidity of γ-alumina and on the Thermal Stability of γ-alumina Supported Nickel—Molybdenum Hydrotreating Catalysts.” Applied Catalysis 39: 239–53. https://doi.org/10.1016/S0166-9834(00)80952-5.10.1016/S0166-9834(00)80952-5Search in Google Scholar

Tan, Q., G. Wang, A. Long, A. Dinse, C. Buda, J. Shabaker, and D. E. Resasco. 2017. “Mechanistic Analysis of the Role of Metal Oxophilicity in the Hydrodeoxygenation of Anisole.” Journal of Catalysis 347: 102–15. https://doi.org/10.1016/J.JCAT.2017.01.008.10.1016/j.jcat.2017.01.008Search in Google Scholar

Tang, S., L. Ji, J. Lin, H. C. Zeng, K. L. Tan, and K. Li. 2000. “CO2 Reforming of Methane to Synthesis Gas over Sol–Gel-Made Ni/γ-Al2O3 Catalysts from Organometallic Precursors.” Journal of Catalysis 194: 424–30. https://doi.org/10.1006/jcat.2000.2957.10.1006/jcat.2000.2957Search in Google Scholar

Tang, W., X. Zhang, Q. Zhang, T. Wang, and L. Ma. 2016. “Hydrodeoxygenation of Anisole over Ni/ α -Al 2 O 3 Catalyst.” Chinese Journal of Chemical Physics 29: 617–22. https://doi.org/10.1063/1674-0068/29/cjcp1603062.10.1063/1674-0068/29/cjcp1603062Search in Google Scholar

Valle, B., A. Remiro, A. T. Aguayo, J. Bilbao, and A. G. Gayubo. 2013. “Catalysts of Ni/α-Al2O3 and Ni/La2O3-αAl2O3 for Hydrogen Production by Steam Reforming of Bio-Oil Aqueous Fraction with Pyrolytic Lignin Retention.” International Journal of Hydrogen Energy 38: 1307–18. https://doi.org/10.1016/j.ijhydene.2012.11.014.10.1016/j.ijhydene.2012.11.014Search in Google Scholar

Vos, B., E. Poels, and A. Bliek. 2001. “Impact of Calcination Conditions on the Structure of Alumina-supported Nickel Particles.” Journal of Catalysis 198: 77–88. https://doi.org/10.1006/jcat.2000.3082.10.1006/jcat.2000.3082Search in Google Scholar

Wang, W., Y. Yang, H. Luo, H. Peng, and F. Wang. 2011. “Effect of La on Ni–W–B Amorphous Catalysts in Hydrodeoxygenation of Phenol.” Industrial and Engineering Chemistry Research 50: 10936–42. https://doi.org/10.1021/ie201272d.10.1021/ie201272dSearch in Google Scholar

Wang, W. Yan, Y. Quan Yang, H. An Luo, and W. Ying Liu. 2010. “Effect of Additive (Co, la) for Ni-Mo-B Amorphous Catalyst and Its Hydrodeoxygenation Properties.” Catalysis Communications 11: 803–07. https://doi.org/10.1016/j.catcom.2010.02.019.10.1016/j.catcom.2010.02.019Search in Google Scholar

Xu, Z., Y. Li, J. Zhang, L. Chang, R. Zhou, and Z. Duan. 2001. “Bound-State Ni Species – A Superior Form in Ni-based Catalyst for CH4/CO2 Reforming.” Applied Catalysis A: General 210: 45–53. https://doi.org/10.1016/S0926-860X(00)00798-5.10.1016/S0926-860X(00)00798-5Search in Google Scholar

Yakovlev, V. A., S. A. Khromova, O. V. Sherstyuk, V. O. Dundich, D. Y. Ermakov, V. M. Novopashina, M. Y. Lebedev, O. Bulavchenko, and V. N. Parmon. 2009. “Development of New Catalytic Systems for Upgraded Bio-Fuels Production from Bio-Crude-Oil and Biodiesel.” Catalysis Today 144: 362–66. https://doi.org/10.1016/j.cattod.2009.03.002.10.1016/j.cattod.2009.03.002Search in Google Scholar

Yang, R., X. Li, J. Wu, X. Zhang, X. Xi, and Z. Zhang. 2009a. “Promotion Effects of La and Ce on Ni/γ-Al2O3 Catalysts in Hydrotreating of Crude 2-ethylhexanol.” Catalysis Letters 132: 275–80. https://doi.org/10.1007/s10562-009-0111-z.10.1007/s10562-009-0111-zSearch in Google Scholar

Yang, R., X. Li, J. Wu, X. Zhang, and Z. Zhang. 2009b. “Promotion Effects of Copper and Lanthanum Oxides on Nickel/Gamma-Alumina Catalyst in the Hydrotreating of Crude 2-ethylhexanol.” Journal of Physical Chemistry C 113: 17787–94. https://doi.org/10.1021/jp9053296.10.1021/jp9053296Search in Google Scholar

Yang, Y., C. Ochoa-Hernández, V. A. de la Peña O’Shea, P. Pizarro, J. M. Coronado, and D. P. Serrano. 2014. “Effect of Metal-Support Interaction on the Selective Hydrodeoxygenation of Anisole to Aromatics over Ni-based Catalysts.” Applied Catalysis B: Environmental 145: 91–100. https://doi.org/10.1016/j.apcatb.2013.03.038.10.1016/j.apcatb.2013.03.038Search in Google Scholar

Youn, M. H., J. G. Seo, P. Kim, J. J. Kim, H.- I. Lee, and I. K. Song. 2006. “Hydrogen Production by Auto-Thermal Reforming of Ethanol over Ni/γ-Al2O3 Catalysts: Effect of Second Metal Addition.” Journal of Power Sources 162: 1270–74. https://doi.org/10.1016/j.jpowsour.2006.08.015.10.1016/j.jpowsour.2006.08.015Search in Google Scholar

Yuan, W., A. C. Hansen, and Q. Zhang. 2005. “Vapor Pressure and Normal Boiling Point Predictions for Pure Methyl Esters and Biodiesel Fuels.” Fuel 84: 943–50. https://doi.org/10.1016/j.fuel.2005.01.007.10.1016/j.fuel.2005.01.007Search in Google Scholar

Zacher, A. H., M. V. Olarte, D. M. Santosa, D. C. Elliott, and S. B. Jones. 2014. “A Review and Perspective of Recent Bio-Oil Hydrotreating Research.” Green Chemistry 16: 491–515. https://doi.org/10.1039/C3GC41382A.10.1039/C3GC41382ASearch in Google Scholar

Zhang, J., H. Wang, and A. K. Dalai. 2007. “Development of Stable Bimetallic Catalysts for Carbon Dioxide Reforming of Methane.” Journal of Catalysis 249: 300–10. https://doi.org/10.1016/j.jcat.2007.05.004.10.1016/j.jcat.2007.05.004Search in Google Scholar

Zhao, C., Y. Kou, A. A. Lemonidou, X. Li, and J. A. Lercher. 2009. “Highly Selective Catalytic Conversion of Phenolic Bio-Oil to Alkanes.” Angewandte Chemie 121: 4047–50. https://doi.org/10.1002/ange.200900404.10.1002/ange.200900404Search in Google Scholar

Zhu, X., P. Huo, Y. Ping Zhang, D. Guo Cheng, and C. Jun Liu. 2008. “Structure and Reactivity of Plasma Treated Ni/Al2O3 Catalyst for CO2 Reforming of Methane.” Applied Catalysis B: Environmental 81: 132–40. https://doi.org/10.1016/j.apcatb.2007.11.042.10.1016/j.apcatb.2007.11.042Search in Google Scholar

Received: 2019-04-02
Revised: 2019-09-22
Accepted: 2019-11-12
Published Online: 2019-12-04

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2019-0066/html?lang=en
Scroll to top button