Startseite Modeling and Testing of a Milli-Structured Reactor for Carbon Dioxide Methanation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Modeling and Testing of a Milli-Structured Reactor for Carbon Dioxide Methanation

  • S. Pérez EMAIL logo , E. Del Molino und V. L. Barrio
Veröffentlicht/Copyright: 14. August 2019

Abstract

The methanation of carbon dioxide (CO2) via the Sabatier reaction is an exothermic process that needs the continuous removal of the heat produced for avoiding the sintering of the catalyst. A novel milli-channel reactor with internal diameter of each channel in the millimeter size has been designed, manufactured and tested for the Sabatier reaction. Thanks to its configuration, this reactor could control effectively the heat generated by the reaction, attaining an intensification of the process. A CFD model was used to study the reaction phenomena occurring inside the reactor and the corresponding heat transfers. The kinetic parameters of the reaction have been obtained, and employing different process condition (different temperatures, pressures and gas flow rates) the results obtained have been studied. At the evaluated parameters, the CFD model fits the experimental results in the developed reactor.

Nomenclature

A

pre-exponential factor of the Arrhenius form, s−1

Cp

specific heat capacity of fluid, J.kg−1. K−1

DejT

effective thermal diffusion in porous media, m2.s−1

Dim

fluid averaged diffusion coefficient, m2.s−1

Ea

activation energy, J.mol−1

F

volume force

H

enthalpy of reaction, J.mol−1

keff

effective thermal conductivity, W.m−1. K−1

Keq

reaction equilibrium constant

kf

forward rate constant, s−1

kr

reverse rate constant, s−1

Mn

mean molar mass, kg.mol−1

n

empirical factor for the global Sabatier reaction

p

absolute pressure, Pa

Q

heat source, W.m−3

Qvd

viscous dissipation, W.m−3

R

ideal gas constant, J.mol−1. K−1

Ri

reaction rate of species i, mol.m−3.s−1

r

reaction rate, mol.m−3.s−1

S

entropy of reaction, J.mol−1. K−1

T

temperature, K

u

fluid velocity field, m.s−1

yi

mole fraction of species i

Greek symbols

µ

fluid viscosity, Pa.s

νi

stoichiometric coefficient of species i

ρ

fluid density, kg.m−3

ωi

mass fraction of species i

Abbreviations

GHSV

gas hourly space velocity, L.gcat1.h−1

Acknowledgements

This research was supported by the University of the Basque Country (UPV/EHU), Spanish Ministry of Economy and Competitiveness (ENE2017-82250-R), European Union through the European Regional Development Fund (FEDER).

References

Alarcón, Andreina, Jordi Guilera, José Antonio Días, and Teresa Andreu. 2019. “Optimization of Nickel and Ceria Catalyst Content for Synthetic Natural Gas Production through CO2 Methanation.” Fuel Processing Technology 193: 114–22.10.1016/j.fuproc.2019.05.008Suche in Google Scholar

Almeida, L. C., O. Sanz, J. D’olhaberriague, S. Yunes, and M. Montes. 2013. “Microchannel Reactor for Fischer–Tropsch Synthesis: Adaptation of a Commercial Unit for Testing Microchannel Blocks.” Fuel 110: 171–77.10.1016/j.fuel.2012.09.063Suche in Google Scholar

Belimov, M., D. Metzger, and P. Pfeifer. 2017. “On the Temperature Control in a Microstructured Packed Bed Reactor for Methanation of CO/CO2 Mixtures.” AIChEJ 63: 120–29.10.1002/aic.15461Suche in Google Scholar

Brooks, K. P., J. Hu, H. Zhu, and R. J. Kee. 2007. “Methanation of Carbon Dioxide by Hydrogen Reduction Using the Sabatier Process in Microchannels Reactors.” Chemical Engineering Science 62: 1161–70.10.1016/j.ces.2006.11.020Suche in Google Scholar

Cruz, S., O. Sanz, R. Poyato, O. H. Laguna, F. J. Echave, L. C. Almeida, M. A. Centeno, et al. 2011. “Design and Testing of a Microchannel Reactor for the PROX Reaction.” Chemical Engineering Journal 167: 634–42.10.1016/j.cej.2010.08.088Suche in Google Scholar

Dace, E., J. Rusanova, J. Gusca, and D. Blumberga. 2014. “Selecting a Catalyst for Methanation Process: Technical and Economic Performance Based TOPSIS Analysis.” Proceedings 27th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems. ECOS 2014, Aabo Akademi University.Suche in Google Scholar

Engelbrecht, N., S. Chiuta, R. C. Everson, H. W. J. P. Neomagus, and D. G. Bessarabov. 2017. “Experimentation and CFD Modelling of a Microchannel Reactor for Carbon Dioxide Methanation.” Chemical Engineering Journal 313: 847–57.10.1016/j.cej.2016.10.131Suche in Google Scholar

Frey, M., D. Édouard, and A. C. Roger. 2015. “Optimization of Structured Cellular Foam-Based Catalysts for Low-Temperature Carbon Dioxide Methanation in a Platelet Milli-Reactor.” Comptes Rendus Chimie 18: 283–92.10.1016/j.crci.2015.01.002Suche in Google Scholar

Gavriilidis, A., P. Angeli, E. Cao, K. Yeong, and Y. Wan. 2002. “Technology and Applications of Microengineered Reactors.” Transactions of Institution of Chemical Engineers (Part A) 80: 3–30.10.1205/026387602753393196Suche in Google Scholar

Kashid, M. N., A. Renken, and L. Kiwi-Minsker. eds. 2015. Overview of Micro Reaction Engineering, in Microstructured Devices for Chemical Processing. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. DOI: 10.1002 / 9783527685226.ch1.10.1002/9783527685226Suche in Google Scholar

Kiwi-Minsker, L., and A. Renken. 2005. “Microstructured Reactors for Catalytic Reactions.” Catalysis Today 110: 2–14.10.1016/j.cattod.2005.09.011Suche in Google Scholar

Kolb, G., and V. Hessel. 2004. “Micro-structured Reactors for Gas Phase Reactions.” Chemical Engineering Journal 98: 1–38.10.1016/j.cej.2003.10.005Suche in Google Scholar

Koschany, F., D. Schlereth, and O. Hinrichsen. 2016. “On the Kinetics of the Methanation of Carbon Dioxide on Coprecipitated NiAl(O)x.” Applied Catalysis B: Environmental 181: 504–16.10.1016/j.apcatb.2015.07.026Suche in Google Scholar

Liu, H., X. Zou, X. Wang, X. Lu, and W. Ding. 2012. “Effect of CeO2 Addition on Ni/Al2O3 Catalysts for Methanation of Carbon Dioxide with Hydrogen.” Journal of Natural Gas Chemistry 21: 703–07.10.1016/S1003-9953(11)60422-2Suche in Google Scholar

McBride, B. J., S. Gordon, and M. A. Reno. 1993. “Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species.” NASA Report TM-4513.Suche in Google Scholar

Men, Y., G. Kolb, R. Zapf, V. Hessel, and H. Lowe. 2007. “Selective Methanation of Carbon Oxides in a Microchannel Reactor—Primary Screening and Impact of Gas Additives.” Catalysis Today 125: 81–87.10.1016/j.cattod.2007.02.017Suche in Google Scholar

Ohya, H., J. Fun, H. Kawamura, K. Itoh, H. Ohashi, and M. Aihara. 1997. “Methanation of Carbon Dioxide by Using Membrane Reactor Integrated with Water Vapor Permselective Membrane and Its Analysis.” Journal of Membrane Science 131: 237–47.10.1016/S0376-7388(97)00055-0Suche in Google Scholar

Rönsch, S., J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P. Prabhakaran, and S. Bajohr. 2016. “Review on Methanation – From Fundamentals to Current Projects.” Fuel 166: 276–96.10.1016/j.fuel.2015.10.111Suche in Google Scholar

Standards of Technical Management of the System. 2005. “Protocol of Detail 01, Approved by Order ITC/3126/2005 of the Ministry of Industry, Tourism and Commerce of Spain.”Suche in Google Scholar

Su, X., J. Xu, B. Liang, H. Duan, B. Hou, and Y. Huang. 2016. “Catalytic Carbon Dioxide Hydrogenation to Methane: A Review of Recent Studies.” Journal of Energy Chemistry 25: 553–65.10.1016/j.jechem.2016.03.009Suche in Google Scholar

Suryawanshi, P. L., S. P. Gumfekar, B. A. Bhanvase, S. H. Sonawane, and M. S. Pimplapure. 2018. “A Review on Microreactors: Reactor Fabrication, Design, and Cutting-edge Applications.” Chemical Engineering Science 189: 431–48.10.1016/j.ces.2018.03.026Suche in Google Scholar

Vidal Vázquez, F., J. Kihlman, A. Mylvaganam, P. Simell, M. L. Koskinen-Soivi, and V. Alopaeus. 2018. “Modeling of Nickel-based Hydrotalcite Catalyst Coated on Heat Exchanger Reactors for CO2 Methanation.” Chemical Engineering Journal 349: 694–707.10.1016/j.cej.2018.05.119Suche in Google Scholar

Wang, W., and J. Gong. 2011. “Methanation of Carbon Dioxide: An Overview.” Frontiers of Chemical Science and Engineering 5 (1): 2–10. DOI: 10.1007/s11705-010-0528-3.Suche in Google Scholar

Yao, X., Y. Zhang, L. Du, J. Liu, and J Yao. 2015. “Review of the Applications of Microreactors.” Renewable and Sustainable Energy Reviews 47: 519–39.10.1016/j.rser.2015.03.078Suche in Google Scholar

Younas, M., L. L. Kong, M. J. K. Bashir, H. Nadeem, A. Shehzad, and S. Sethupathi. 2016. “Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO2.” Energy&Fuels 30 (11): 8815–31.10.1021/acs.energyfuels.6b01723Suche in Google Scholar

Received: 2018-09-17
Revised: 2019-06-24
Accepted: 2019-07-24
Published Online: 2019-08-14

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2018-0238/html?lang=de
Button zum nach oben scrollen