Startseite Photocatalytic Degradation of Caffeine in a Solar Reactor System
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Photocatalytic Degradation of Caffeine in a Solar Reactor System

  • Raúl Luna EMAIL logo , Carolina Solis , Nayeli Ortiz , Aurora Galicia , Francisca Sandoval , Brenda Zermeño und Edgar Moctezuma
Veröffentlicht/Copyright: 19. Januar 2018

Abstract

In this paper, solar photodegradation of caffeine in aqueous solution was studied, this organic compound is the most consumed stimulant around the world. The degradation experiments were carried outdoors in a solar reactor and Evonik-Degussa P25 TiO2 was used as catalyst. The photochemical and photocatalytic effect were tested in aqueous solutions of caffeine. Experimental results indicate that the organic compound is easily degraded over a very short period of time using 0.5 g L-1 of catalyst. The kinetic analysis indicates that the initial reaction rate of caffeine is described by the LH-HW model. However, the original compound cannot be mineralized very fast, caffeine is converted to other organic compounds with a longer lifetime before the mineralization, converting caffeine CO2 and water.

Acknowledgements

Thanks to the photocatalysis laboratory of Universidad Autónoma de San Luis Potosi for the TOC equipment; To the students Ana María García Rodríguez and Sandra Monroy Maldonado for the technical support in the preliminary experiments of photocatalytic degradation.

References

Ahmad, S., S. Siong, and M.N. Mohamad. 2015. “Spectrophotometric Analysis of Caffeine.” International Journal of Analytical Chemistry 2015: 1–7. Hindawi Publishing Corporation International Journal of Analytical Chemistry Volume 2015, Article ID 170239,7 pages http://dx.doi.org/10.1155/2015/170239.10.1155/2015/170239Suche in Google Scholar PubMed PubMed Central

Álvarez, P.M., J. Jaramillo, F. López-Piñero, and P.K. Plucinski. 2010. “Preparation and Characterization of Magnetic TiO2 Nanoparticles and Their Utilization for the Degradation of Emerging Pollutants in Water.” Applied Catalysis B: Environmental 100:338–345.10.1016/j.apcatb.2010.08.010Suche in Google Scholar

Arfanis, M.K., P. Adamou, N.G. Moustakas, T.M. Triantis, A.G. Kontos, and P. Falaras. 2017. “Photoctalytic Degradation of Salicylic Acid and Caffeine Emerging Contaminants Using Titania Nanotubes.” Chemical Engineering Journal 310:525–536.10.1016/j.cej.2016.06.098Suche in Google Scholar

Basha, S., D. Keane, K. Nolan, M. Oelgemöller, J. Lawler, J.M. Tobin, and A. Morrissey. 2015. “UV-induced Photocatalytic Degradation of Aqueous Acetaminophen: The Role of Adsorption and Reaction Kinetics.” Environment Sciences Pollution Researcher 22 (3): 2219–2230.10.1007/s11356-014-3411-9Suche in Google Scholar PubMed

Bernabeu, A., R.F. Vercher, L. Santos-Juanes, P.J. Simón, C. Lardín, M.A. Martínez, J.A. Vicente, R. González, C. Llosá, A. Arques, and A.M. Amat. 2011. “Solar Photocatalysis as a Tertiary Treatment to Remove Emerging Pollutants from Wastewater Treatment Plant Effluents.” Catalysis Today 161:235–240.10.1016/j.cattod.2010.09.025Suche in Google Scholar

Bolong, N., A.F. Ismail, M.R. Salim, and T. Matsuura. 2009. “A Review of the Effects of Emerging Contaminants in Wastewater and Options for Their Removal.” Desalination 239:229–246.10.1016/j.desal.2008.03.020Suche in Google Scholar

Bruton, T., A. Alboloushi, B. De La Garza, Bi-O. Kim, and R.U. Halden. 2010. “Fate of Caffeine in the Environment and Ecotoxicological Considerations.” In Rolf U. Halden, (Ed.), Contaminants of emerging concern in the environment: Ecological and human health considerations. Vol. 1048, 257–273. Washington, DC.: American Chemical Soiety. DOI: 10.1021/bk-2010-1048Suche in Google Scholar

Buerge, I.J., T. Poiger, M.D. Muller, and H. Buser. 2003. “Caffeine, an Anthropogenic Marker for Wastewater Contamination of Surface Waters.” Evironmental Science & Technology 37:691–700.10.1021/es020125zSuche in Google Scholar PubMed

Calle, A.S 2011. Determinación Analítica De La Cafeína En Diferentes Productos Comerciales. Vol. III. Barcelona, España: Universitat Politécnica de Catalunya (UPC).Suche in Google Scholar

Carotenuto, M., G. Lofrano, A. Siciliano, F. Aliberti, and M. Guida. 2014. “TiO2 Photocatalytic Degradation of Caffeine and Ecotoxicological Assessment of Oxidation By-Products.” Global Nest Journal 20: 1–12. DOI: 10.1080/01919512.2015.1016572.Suche in Google Scholar

Dalmázio, I., L.S. Santos, R.P. Lopes, M.N. Eberlin, and R. Augusti. 2005. “Advanced Oxidation of Caffeine in Water: On-Line and Real-Time Monitoring by Electrospray Ionization Mass Spectrometry.” Environmental Science & Technology 39: 5982–5988.10.1021/es047985vSuche in Google Scholar PubMed

Daughton, C.G., and T.A. Ternes. 1999. “Pharmaceuticals and personal care products in the environment: agents of subtle change?” Environmental Health Perspectives 107 (Suppl 6): 907–938. DOI: 10.2307/3434573.Suche in Google Scholar

De Lasa, H., B. Serrano, and M. Salaices. 2005. Photocatalytic Reaction Engineering. New York, USA: Springer978-0-387-27591-8. DOI: 10.1007/0-387-27591-6Suche in Google Scholar

Delgado, S., 2011. Evaluación De Tecnologías Potenciales De Reducción De La Contaminación De Las Aguas De Canarias (Tecnoagua). Santa Cruz de Tenerife, España: Proyecto Universidad de La laguna.Suche in Google Scholar

Escobedo, J.F., E.N. Gomes, A.P. Oliveira, and J. Soares. 2009. “Modeling Hourly and Daily Fractions of UV, PAR and NIR to Global Solar Radiation under Various Sky Conditions at Botucatu, Brasil.” Applied Energy 86:299–309.10.1016/j.apenergy.2008.04.013Suche in Google Scholar

Félix–Cañedo, T.E., J.C. Durán–Álvarez, and B. Jiménez–Cisneros. 2013. “The Occurrence and Distribution of a Group of Organic Micropollutants in Mexico City’s Water Sources.” Science of the Total Environment 454-455:109–118.10.1016/j.scitotenv.2013.02.088Suche in Google Scholar

Fernández-Ibáñez, P., J. Blanco, S. Malato, and F.J. De Las Nieves. 2003. “Aplication of Colloidal Stability of TiO2 Particles for Recovery and Reuse in a Solar Photocatalysis.” Water Research 37:3180–2188.10.1016/S0043-1354(03)00157-XSuche in Google Scholar

Fujishima, A., T.N. Rao, and D.A. Tryk. 2000. “Titanium Dioxide Photocatalysis.” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1:1–21.10.1016/S1389-5567(00)00002-2Suche in Google Scholar

Fujishima, A., X. Zhang, and D.A. Tryk. 2008. “TiO2 Photocatalysis and Related Surface Phenomena.” Surface Science Reports 63:515–582.10.1016/j.surfrep.2008.10.001Suche in Google Scholar

Gardinali, P.R., and X. Zhao. 2002. “Trace Determination of Caffeine in Surface Water Samples by Liquid Chromatography–Atmospheric Pressure Chemical Ionization–Mass Spectrometry (LC–APCI–MS).” Environment International 28 (6): 521–528.10.1016/S0160-4120(02)00080-6Suche in Google Scholar

Gaya, U.I., and A.H. Abdullah. 2008. “Heterogeneous Photocatalytic Degradation of Organic Contaminants over Titanium Dioxide: A Review of Fundamentals, Progress and Problems.” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 9:1–12.10.1016/j.jphotochemrev.2007.12.003Suche in Google Scholar

Gil, M.J., A.M. Soto, J.I. Usma, and O.D. Gutiérrez. 2012. “Emerging Contaminants in Waters: Effects and Possible Treatments.” Producción + Limpia 7:52–73.Suche in Google Scholar

Klamerth, N., S. Malato, M. I. Maldonado, A. Agüera, and A. R. Fernández-Alba. 2010a. “Application of Photo-Fenton as a Tertiary Treatment of Emerging Contaminants in Municipal Wastewater.” Environmental Science && Technology 44 (5): 1792–1798. DOI: 10.1021/es903455p.Suche in Google Scholar PubMed

Klamerth, N., L. Rizzo, S. Malato, Manuel I. Maldonado, A. Agüera, and A.R. Fernández-Alba. 2010b. “Degradation of Fifteen Emerging Contaminants at μgL−1 Initial Concentrations by Mild Solar Photo-Fenton in MWTP Effluents.” Water Research 44 (2): 545–554. DOI: 10.1016/j.watres.2009.09.059.Suche in Google Scholar PubMed

Klamerth, N., N. Miranda, S. Malato, A. Agüera, A.R. Fernández-Alba, M.I. Maldonado, and J.M. Coronado. 2009. “Degradation of emerging contaminants at low concentrations in MWTPs effluents with mild solar photo-Fenton and TiO2.” Catalysis Today 144 (1-2): 124–130. DOI: 10.1016/j.cattod.2009.01.024.Suche in Google Scholar

Klavarioti, M., D. Mantzavinos, and D. Kassinos. 2009. “Removal of Residual Pharmaceuticals from Aqueous Systems by Advanced Oxidation Processes.” Environment International 35:402–417.10.1016/j.envint.2008.07.009Suche in Google Scholar PubMed

Lalia, Boor Singh, Corrado Garlisi, Giovanni Palmisano, and Raed Hashaikeh. 2016. “Photocatalytic Activity of an Electrophoretically Deposited Composite Titanium Dioxide Membrane Using Carbon Cloth as a Conducting Substrate.” RSC Advances 6 (69): 64219–64227. DOI: 10.1039/c6ra07390e.10.1039/C6RA07390ESuche in Google Scholar

Lapworth, D.J., N. Baran, N.E. Stuart, and R.S. Ward. 2012. “Emerging Organic Contaminants in Groundwater: A Review of Sources, Fate and Occurrence.” Environmental Pollution 163:287–303.10.1016/j.envpol.2011.12.034Suche in Google Scholar PubMed

Li Chin, C., C.H. Luo, S.W. Huang, Y.C. Wu, and Y.C. Huang. 2011. “Photocatalytic Degradation Mechanism and Kinetics of Caffeine in Aqueous Suspension of Nano-TiO2.” Advanced Materials Research 214: 97–102.10.4028/www.scientific.net/AMR.214.97Suche in Google Scholar

Linley, Stuart, YingYing Liu, Carol J. Ptacek, David W. Blowes, and Frank X. Gu. 2014. “Recyclable Graphene Oxide-Supported Titanium Dioxide Photocatalysts with Tunable Properties.” ACS Applied Materials & Interfaces 6 (7): 4658–4668.10.1021/am4039272Suche in Google Scholar PubMed

Marques, Rita R.N., Maria J. Sampaio, Pedro M. Carrapiço, Cláudia G. Silva, Sergio Morales-Torres, Goran Dražić, Joaquim L. Faria, and Adrián M.T. Silva. 2013. “Photocatalytic degradation of caffeine: Developing solutions for emerging pollutants.” Catalysis Today 209: 108–115. DOI: 10.1016/j.cattod.2012.10.008.Suche in Google Scholar

Martínez, M.J., M.J. Gómez, S. Herrera, M.D. Hernando, A. Agüera, and A.R. Fernández-Alba. 2012. “Occurrence and Persistence of Organic Emerging Contaminants and Priority Pollutants in Five Sewage Treatment Plants of Spain: Two Years Pilot Survey Monitoring.” Environmental Pollution 164:267–273.10.1016/j.envpol.2012.01.038Suche in Google Scholar PubMed

Moctezuma, E., E. Leyva, M. López, A. Pinedo, B. Zermeño, and B. Serrano. 2013. “Photocatalytic Degradation of Metoprolol Tartrate.” Topics in Catalysis 56 (18–20):1875–1882.10.1007/s11244-013-0119-xSuche in Google Scholar

Murray, K.E., S.M. Thomas, and A.A. Bodour. 2010. “Prioritizing Research for Trace Pollutants and Emerging Contaminants in the Freshwater Environment.” Environmental Pollution 158:3462–3471.10.1016/j.envpol.2010.08.009Suche in Google Scholar

Pal, A., K. Yew-Hoong Gin, A. Yu-Chen Lin, and M. Reinhard. 2010. “Impacts of Emerging Organic Contaminants on Freshwater Resources: Review of Recent Occurrences, Sources, Fate and Effects.” Science of the Total Environment 408:6062–6069.10.1016/j.scitotenv.2010.09.026Suche in Google Scholar

Pardo, R., Y. Alvarez, D. Barr Al Tafalla, and M. Farré. 2007. “Cafeína: Un Nutriente, Un Fármaco, O Una Droga De Abuso.” Adicciones 19:225–238.10.20882/adicciones.303Suche in Google Scholar

Phong, D.D., and J. Hur. 2015. “Insight into Photocatalytic Degradation of Dissolved Organic Matter in UVA/TiO2 Systems Revealed by Fluorescence EEM-PARAFAC.” Water Research 87: 119–126.10.1016/j.watres.2015.09.019Suche in Google Scholar

Pinedo, A., M. López, E. Leyva, B. Zermeño, B. Serrano, and E. Moctezuma. 2016. “Photocatalytic Decomposition of Metoprolol and Its Intermediate Organic Reaction Products: Kinetics and Degradation Pathway.” International Journal Chemical Reactions Engineering 14: 809–820.10.1515/ijcre-2015-0132Suche in Google Scholar

Pollack, K., K. Balazs, and O. Ogunseitan. 2009. “Proteomic Assessment of Caffeine Effects on Coral Symbionts.” Environ. Sci. Technol 43:2085–2091.10.1021/es802617fSuche in Google Scholar

Prieto-Rodríguez, L., 2012. “Eliminación de microcontaminantes orgánicos presentes en aguas residuales urbanas mediante combinación de procesos de depuración biológica y oxidación química”. Tesis Doctoral. Universidad de Almería. España.Suche in Google Scholar

Servicio Meteriológico Nacional, accessed June 2017: http://smn.cna.gob.mx/es/informacion-climatologica-ver-estado?estado=verSuche in Google Scholar

Shu, Z., J.R. Bolton, M. Belosevic, and M.G. El Din. 2013. “Photodegradation of Emerging Micropollutants Using the Medium-Pressure UV/H2O2 Advanced Oxidation Process.” Water Research 47:2881–2889.10.1016/j.watres.2013.02.045Suche in Google Scholar

Souza, Fernanda Siqueira, and Liliana Amaral Féris. 2015. “Degradation of Caffeine by Advanced Oxidative Processes: O3 and O3/UV.” Ozone: Science & Engineering 37 (4): 379–384. DOI: 10.1080/01919512.2015.1016572.Suche in Google Scholar

Tavares, C., and R.S. Kimiko. 2012. “Cafeína Para El Tratamiendo Del Dolor.” Revista Brasileña Anestesiol 63 (3):387–401.10.1016/S0034-7094(12)70139-3Suche in Google Scholar

Telo, João P., and Abel J. S. C. Vieira. 1997. “Mechanism of Free Radical Oxidation of Caffeine in Aqueous Solution.” Journal of the Chemical Society, Perkin Transactions 2 (9): 1755–1758. DOI: 10.1039/a700944e.Suche in Google Scholar

Zhang, J., L.P. Wang, W. Guo, X.D. Peng, M. Li, and Z.B. Yuan. 2011. “Sensitive Differential Pulse Stripping Voltammetry of Caffeine in Medicines and Cola Using a Sensor Based on Multi-Walled Carbon Nanotubes and Nafion.” International Journal of Electrochemical Science 6:997–1006.Suche in Google Scholar

Received: 2017-07-01
Revised: 2017-12-04
Accepted: 2018-01-06
Published Online: 2018-01-19

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2017-0126/pdf?lang=de
Button zum nach oben scrollen