Startseite Hybrid Ionic Liquid-Chitosan Membranes for CO2 Separation: Mechanical and Thermal Behavior
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Hybrid Ionic Liquid-Chitosan Membranes for CO2 Separation: Mechanical and Thermal Behavior

  • Esther Santos EMAIL logo , Enrique Rodríguez-Fernández , Clara Casado-Coterillo ORCID logo und Ángel Irabien
Veröffentlicht/Copyright: 23. Mai 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Pure chitosan (CS) and hybrid ionic liquid-chitosan membranes loaded with 5 wt% 1-ethyl-3-methylimidazolium acetate ([emim][Ac]) ionic liquid were prepared in order to improve the thermal behavior of supported ionic liquid membranes (SILMs) for CO2 separation. Gas permeability, solubility and diffusivity were evaluated in the temperature range 298–323 K. The temperature influence was well described in terms of the Arrhenius–van’t Hoff exponential relationships. Activation energies were calculated and compared with those obtained for SILMs with the same ionic liquid. The introduction of this ionic liquid in the hybrid solid membrane decreases the permeability activation energy, leading to a lower influence of the temperature in the permeability and diffusivity. Moreover, the thermal behavior is similar to pure chitosan membranes, and the mechanical strength and flexibility were improved due to the introduction of the ionic liquid in the polymer matrix.

Acknowledgments

Financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) under projects ENE 2010–14828 and CTQ2012-31229 is gratefully acknowledged. C.C.C. also thanks the Ministry for the Ramón y Cajal grant (RYC-2011-08550) at the Universidad de Cantabria.

References

1. Rochelle GT. Amine scrubbing for CO2 capture. Science 2009;325:1652–4.10.1126/science.1176731Suche in Google Scholar

2. Hägg M-B. 2009. Membranes in gas separation. In: AK. Pabby, SSH. Rizvi, AM. Sastre, editors. Handbook of membrane separations. Boca Raton, FL: CRC Press, Taylor & Francis, 65–103.Suche in Google Scholar

3. Robeson LM. The upper bound revisited. J Membr Sci 2008;320:390–400.10.1016/j.memsci.2008.04.030Suche in Google Scholar

4. Seddon KR. Ionic liquids for clean technology. J Chem Tech Biotechnol 1997;68:351–6.10.1002/(SICI)1097-4660(199704)68:4<351::AID-JCTB613>3.0.CO;2-4Suche in Google Scholar

5. Santos E, Albo J, Irabien A. Acetate based supported ionic liquid membranes (SILMs) for CO2 separation: influence of the temperature. J Membr Sci 2014;452:277–83.10.1016/j.memsci.2013.10.024Suche in Google Scholar

6. Neves LA, Crespo JG, Coelhoso IM. Gas permeation in supported ionic liquid membranes. J Membr Sci 2010;357:160–17.10.1016/j.memsci.2010.04.016Suche in Google Scholar

7. Chung T-S, Jiang LY, Li Y, Kulprathipanja S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Pol Sci 2007;32:483–507.10.1016/j.progpolymsci.2007.01.008Suche in Google Scholar

8. Dong Y, Wang M, Chen L, Li M. Preparation, characterization of P(VDF-HFP)/[bmim]BF4 ionic liquids hybrid membranes and their pervaporation performance for ethyl acetate recovery from water. Desal 2012;295:53–60.10.1016/j.desal.2012.03.018Suche in Google Scholar

9. Hao L, Li P, Yang T, Chung T-S. Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. J Membr Sci 2013;436:221–31.10.1016/j.memsci.2013.02.034Suche in Google Scholar

10. Hudiono YC, Carlisle TK, Bara JE, Zhang Y, Gin DL, Noble RD. A three-component mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials. J Membr Sci 2010;350:117–23.10.1016/j.memsci.2009.12.018Suche in Google Scholar

11. El-Azzami LA, Grulke EA. Dual mode model for mixed gas permeation of CO2, H2, and N2 through a dry chitosan membrane. J Polym Sci B 2007;45:2620–31.10.1002/polb.21236Suche in Google Scholar

12. Casado-Coterillo C, Andrés F, Téllez C, Coronas J, Irabien A. Synthesis and characterization of ETS-10/chitosan nanocomposite materials for pervaporation. Sep Sci Technol 2014;49:1903–9.10.1080/01496395.2014.908921Suche in Google Scholar

13. Casado-Coterillo C, López-Guerrero MD, Irabien A. Synthesis and characterisation of ETS-10/acetate-based ionic liquid/chitosan mixed matrix membranes for CO2/N2 separation. Membranes 2014;4:287–301.10.3390/membranes4020287Suche in Google Scholar PubMed PubMed Central

14. Albo J, Santos E, Neves LA, Simeonov SP, Afonso CA, Crespo JP, et al. Separation performance of CO2 through supported magnetic ionic liquid membranes (SMILMs). Sep Purif Technol 2012;97:26–33.10.1016/j.seppur.2012.01.034Suche in Google Scholar

15. Bara JE, Lessmann S, Gabriel CJ, Hatakeyama ES, Noble RD, Gin DL. Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes. Ind Eng Chem Res 2007;46:5397–404.10.1021/ie0704492Suche in Google Scholar

16. Cussler EL. Diffusion. Mass transfer in fluid systems. 2nd ed. New York: Cambridge University Press, 1997:21–23, 434–5, 438–9.Suche in Google Scholar

17. Crank J. The mathematics of diffusion. 2nd ed. Oxford: Clarendon Press, 1975: 411.Suche in Google Scholar

18. Zuo G, Wan Y, Wang L, Liu C, He F, Luo H. Synthesis and characterization of laminated hydroxyapatite/chitosan nanocomposites. Mater Lett 2010;64:2126–8.10.1016/j.matlet.2010.06.063Suche in Google Scholar

19. Xu D, Loo LS, Wang K. Characterization and diffusion behavior of chitosan-POSS composite membranes. J Appl Pol Sci 2011;122:427–35.10.1002/app.34146Suche in Google Scholar

20. Liu Y, Yu S, Wu H, Li Y, Wang S, Tian Z. High permeability hydrogel membranes of chitosan/poly ether-block-amide blends for CO2 separation. J Membr Sci 2014;469:198–208.10.1016/j.memsci.2014.06.050Suche in Google Scholar

21. Balau L, Lisa G, Popa MI, Tura V, Melnig V. Physico-chemical properties of chitosan films. Cent Eur J Chem 2004;2:638–47.10.2478/BF02482727Suche in Google Scholar

22. El-Azzami LA, Grulke EA. Carbon dioxide separation from hydrogen and nitrogen by fixed facilitated transport in swollen chitosan membranes. J Membr Sci 2008;323:225–34.10.1016/j.memsci.2008.05.019Suche in Google Scholar

Published Online: 2015-5-23
Published in Print: 2016-6-1

©2016 by De Gruyter

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2014-0109/html
Button zum nach oben scrollen