Abstract
Austenitic and duplex stainless steels are used in a variety of industries due to their high corrosion resistance. However, this is countered by a high coefficient of friction and thus a limited wear behaviour, which restricts the technical application possibilities. Coatings or conventional hardening processes, such as solution nitriding above 1000 °C, offer a certain reduction of these wear phenomena, but are associated with the risk of delamination and/or loss of corrosion properties. In addition, the hardening effect is limited for austenitic and duplex grades. The low temperature surface hardening process below 500 °C offers the possibility to overcome these limitations. In this article the technology of this process is explained. In addition, research results show the positive influence of this treatment on the lifetime of components made of corrosion resistant steels. As a future outlook, possible properties and applications for the prospective increasing number of hydrogen applications are explained.
Kurzfassung
Korrosionsbeständige austenitische und Duplex-Stähle finden aufgrund ihres hohen Korrosionswiderstandes in einer Vielzahl von Industriezweigen Anwendung. Dem steht jedoch ein hoher Reibkoeffizient und damit ein limitiertes Verschleißverhalten entgegen, welche die technischen Einsatzmöglichkeiten stark beschränken. Beschichtungen oder konventionelle Härteverfahren wie das Lösungsnitrieren über 1000 °C bieten eine gewisse Reduktion dieser Verschleißerscheinungen, sind jedoch mit dem Risiko der Delamination und/oder dem Verlust der Korrosionseigenschaften verbunden. Zusätzlich ist bei austenitischen und Duplex-Stählen der Härtungseffekt nur limitiert. Das Niedertemperatur-Oberflächenhärteverfahren unter 500 °C bietet eine Möglichkeit, diese Einschränkungen zu überwinden. In diesem Artikel wird die Technologie dieses Verfahrens erläutert. Zusätzlich zeigen Untersuchungsergebnisse den positiven Einfluss dieser Behandlung auf die Lebensdauer von Bauteilen aus korrosionsbeständigen Stählen. Als ein Zukunftsausblick werden die möglichen Eigenschaften und Einsatzmöglichkeiten für die perspektivisch steigende Anzahl von Wasserstoff-Anwendungen erläutert.
References
1 Inoue Y.; Kikuchi M.: Present and Future Trends of Stainless Steel for Automotive Exhaust System. Nippon Steel Technical Report No. 88, 2003Suche in Google Scholar
2 Dong, H.: S-Phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys. International Mater. Rev. 55 (2010) 2, DOI:10.1179/095066009X1257253017058910.1179/095066009X12572530170589Suche in Google Scholar
3 Bell, T.; Li, C.: Stainless Steel – Low Temperature Nitriding and Carburizing. Adv. Mater. Proces. 160 (2002) 6, 2002, pp. 49–51Suche in Google Scholar
4 Buhagiar, J.: 25 years of S-Phase. Surf. Eng. 26 (2010) 4, pp. 229–232, DOI:10.1179/026708410X1268735694875110.1179/026708410X12687356948751Suche in Google Scholar
5 Müller, D.: Die Wärmebehandlung metallischer Werkstoffe. Vorlesungsmanuskript, Universität Bayreuth, 2013Suche in Google Scholar
6 Mittemeijer, E. J.; Somers, M. A. J.: Thermochemical Surface Engineering of Steels. Woodhead Publishig, Sawston, UK, 2015, pp. 581–614, DOI:10.1080/02670844.2015.111948510.1080/02670844.2015.1119485Suche in Google Scholar
7 Christiansen, T. L.; Hummelshoj, T. S.; Somers, M. A. J.: Method for solution hardening of a cold deformed workpiece of a passive alloy. European patent specification, 2017, pp. 11–13, WO 2012/146254Suche in Google Scholar
8 Christiansen, T. L.; Villa, M.; Tibollo, C.; Dahl, K. V.; Somers, M. A. J.: High Temperature Solution Nitriding of Stainless Steels; Current Status and Future Trends. HTM Journal of Heat Treatment and Materials 75 (2020) 2, pp. 69–82. DOI: 10.3139/105.11040610.3139/105.110406Suche in Google Scholar
9 Zaugg, R.; Edenhofer, B.; Gräfen, W.; Bouwmann, Jan W.; Berns, H.: Fortschritte beim N-Einsatzhärten von nichtrostenden Stählen nach dem SolNit-Verfahren. HTM Z. Werst. Wärmebeh. Fertigung 60 (2005) 1, pp. 6–11. DOI: 10.3139/105.10031810.3139/105.100318Suche in Google Scholar
10 Berns, H.; Zaugg, R.: Anwendung des Randaufstickens für nichtrostende Bauteile. HTM Z. Werst. Wärmebeh. Fertigung 57 (2002) 6, pp. 377–382Suche in Google Scholar
11 Christiansen, T. L.; Villa, M.; Tibollo, C.; Dahl, K. V.; Somers, M. A. J.: High Temperature Solution Nitriding of Stainless Steels; Current Status and Future Trends. HTM J. Heat Treatm. Mat. 75 (2020) 2, pp. 69–82, DOI: 10.3139/105.11040610.3139/105.110406Suche in Google Scholar
12 Ipsen: Heat Treatment of Stainless Steels Using the SolNit Process. WWW page. https://www.ipsenusa.com/resources/articles-and-white-papers/heat-treatingstainless-steels accessed 03.02.2021Suche in Google Scholar
13 MacKenzie, Scott, D.: Metallurgical Aspects of Distortion and Residual Stresses in Heat Treated Parts. Conference: 23rd IFHTSE Congress on Heat Treatment and Surface Engineerig, 18.–21.04.16, Savannah, GA, Curran Associates, Inc., Red Hook, NY, USA, 2016, pp. 372–382. – ISBN: 9781510823709Suche in Google Scholar
14 Heuer, A. H.; Ernst, F.; Kahn, H.;Avishai, A.; Michal, G. M.; Pitchureb, D. J.; Rickerb, R. E.: Interstitial Defects in 316L Austenitic Stainless Steel Containing “Colossal” Carbon Concentrations: an Internal Friction Study. Scripta Mater 56 (2007) 12, pp. 1067–1070, DOI:10.1016/j.scriptamat.2007.02.03510.1016/j.scriptamat.2007.02.035Suche in Google Scholar
15 Berns, H.; Pyzalla, A.: Microstructure and residual stresses of stainless steels case hardened with nitrogen. Surf. Eng. 20 (2004) 6, pp. 459–463, DOI:10.1179/174329404X710810.1179/174329404X7108Suche in Google Scholar
16 Miki, Y.; Nishimoto, A.; Tamiya, T.: X-Ray Residual Stress in the S-Phase of Stainless Steel Nitrided by a Plasma Nitriding. J. Soc. Mater. Sci. 65 (2016) 7, pp. 517–524, DOI:10.2472/jsms.67.71510.2472/jsms.67.715Suche in Google Scholar
17 Zum Gahr, K.-H.: Grundlagen des Verschleißes. VDI Bericht Nr. 600.3, VDI Verlag, Düsseldorf, 1987Suche in Google Scholar
18 Seidel, W. W.; Hahn, F: Werkstofftechnik, Werkstoffe – Eigenschaften – Prüfung – Anwendung. 8. Aufl., Carl Hanser Verlag, München, 2010. – ISBN: 978-3-446-42064-9Suche in Google Scholar
19 ASTM G99-95a(2000)e1: Standard Test Method for Wear Testing with a Pin-onDisk Apparatus. ASTM International, West Conshohocken, PA, USA, 2000Suche in Google Scholar
20 Magee, J. H.; Kosa, T.; Schlosser, D. K.: Corrosion resistant duplex stainless steel with improved galling resistance. US5254184A, United States Patent, 1993Suche in Google Scholar
21 ASTM G98-02, Standard Test Method for Galling Resistance of Materials. ASTM International, 2009Suche in Google Scholar
22 ISO 1143:2010, Metallic materials – Rotating bar bending fatigue testing. ISO, 2010Suche in Google Scholar
23 Bartos , R.; Wimkelgrund, R.: Stahlfibel. Stahlinstitut VDEH, Verlag Stahlleisen, 2007. – ISBN: 978-3-514-00741-3Suche in Google Scholar
24 Feurer, M.; Lueg, J.; Schürmann H.: Stahl-Lexikon, Ein material-, produkt-, und anarbeitungskundliches Nachschlagwerk für den Stahlhandel, Bundesverband Deutscher Stahlhandel, 27. Aufl., 2009. – ISBN: 978-3861303299Suche in Google Scholar
25 Hydrogen council: Hydrogen Scaling Up: A Sustainable Pathway for the Global Energy Transition. Institute of Gas Engineers & Managers, 2017Suche in Google Scholar
26 Jiang, Y; Wu, Q.; Wang, Y.; Zhao, J.; Gong, J.: Suppression of hydrogen absorption into 304L austenitic stainless steel by surface low temperature gas carburizing treatment International Journal of Hydrogen Energy 43 (2019) 44, pp. 23054–24064, DOI:10.1016/J.IJHYDENE.2019.07.11210.1016/J.IJHYDENE.2019.07.112Suche in Google Scholar
27 Schäfer, C.: Diffusionseigenschaften bestimmter Metalle bei der Hochtemperaturwasserstoffabtrennung. Dissertation, Technische Universität München, 2010Suche in Google Scholar
28 Richard, P.: Gasous hydrogen embrittlement. int. j. hydrogen energy 44 (2019), DOI:10.1016/j.ijhydene.2019.07.11210.1016/j.ijhydene.2019.07.112Suche in Google Scholar
29 Murat, C.; Köse, H.: Hydrogen use in internal combustion engine: a review. Int. J. Automot. Eng. Technol. 1 (2012) 1, pp. 1–15, OASuche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston, Germany
Artikel in diesem Heft
- Contents / Inhalt
- Martensitic Induction Hardening of Nitrided Layers*
- Application of Machine Learning Techniques to Determine Surface Hardness Based on the Barkhausen Effect
- S3P– Innovative Surface Treatment to Increase the Wear Resistance of Stainless Steel Components*
- Gas Analysis and Optimization of Debinding and Sintering Processes for Metallic Binder-Based AM*
- Imprint / Impressum
- Imprint / Impressum
- From and for Practice / Praxis-Informationen
- AWT-Info / HTM 06-2022
- HTM Praxis
Artikel in diesem Heft
- Contents / Inhalt
- Martensitic Induction Hardening of Nitrided Layers*
- Application of Machine Learning Techniques to Determine Surface Hardness Based on the Barkhausen Effect
- S3P– Innovative Surface Treatment to Increase the Wear Resistance of Stainless Steel Components*
- Gas Analysis and Optimization of Debinding and Sintering Processes for Metallic Binder-Based AM*
- Imprint / Impressum
- Imprint / Impressum
- From and for Practice / Praxis-Informationen
- AWT-Info / HTM 06-2022
- HTM Praxis