Home Influence of Plasma Power and Oxygen-Containing Process Gases in Active Screen Plasma Nitrocarburizing with Carbon Solid Source*
Article
Licensed
Unlicensed Requires Authentication

Influence of Plasma Power and Oxygen-Containing Process Gases in Active Screen Plasma Nitrocarburizing with Carbon Solid Source*

  • J. Böcker EMAIL logo , A. Puth , A. V. Pipa , J.-P. H. van Helden , J. Röpcke , H. Biermann and A. Dalke
Published/Copyright: October 11, 2022

Abstract

Plasma nitrocarburizing by means of active screen technology using an active screen made of carbon fiber-reinforced carbon was carried out by varying the power at the active screen and using oxygen-containing fresh gas components (O2, CO2) in the N2:H2 plasma using the example of the quenched and tempered steel AISI 4140 (42CrMo4). The investigations focused on the analysis of the process gas by means of laser absorption spectroscopy, the evaluation of the produced compound layers with regard to structure and phase composition, as well as the resulting properties. It was shown that by varying the process gas atmosphere, the structural composition of the compound layer and the concentration profiles of nitrogen and carbon can be specifically influenced. The high concentrations of carbon-containing compounds in the process gas resulted in complete suppression of γ’-Fe4N formation, but cementite was detected in the lower part of the compound layer. The addition of oxygen-containing fresh gases and the resulting change in process gas composition suppressed cementite formation. The results suggest that, in particular, high powers at the carbon active screen and the simultaneous addition of oxygen-containing gases results in the generation of nitrogen-rich, single-phase ε-compound layers.

Kurzfassung

Das Plasmanitrocarburieren mittels Aktivgitter-Technologie unter Nutzung eines Aktivgitters aus kohlenstofffaserverstärktem Kohlenstoff wurde unter Variation der Leistung am Aktivgitter sowie unter Nutzung sauerstoffhaltiger Frischgasanteile (O2, CO2) im N2:H2- Plasma am Beispiel des Vergütungsstahls AISI 4140 (42CrMo4) durchgeführt. Der Fokus der Untersuchungen lag auf der Analyse des Prozessgases mittels Laserabsorptionsspektroskopie, der Bewertung der erzeugten Verbindungsschichten hinsichtlich Struktur und Phasenzusammensetzung sowie den resultierenden Eigenschaften. Es konnte gezeigt werden, dass durch die Variation der Prozessgasatmosphäre der strukturelle Aufbau der Verbindungsschicht und die Konzentrationsverläufe von Stickstoff und Kohlenstoff gezielt beeinflusst werden können. Die hohen Konzentrationen an kohlenstoffhaltigen Verbindungen im Prozessgas führten zur vollständigen Unterdrückung der γ‘-Fe4N-Bildung, jedoch wurde im unteren Teil der Verbindungsschicht Zementit detektiert. Durch die Zugabe sauerstoffhaltiger Frischgase und der daraus resultierenden veränderten Prozessgaszusammensetzung konnte die Zementitbildung unterdrückt werden. Die Ergebnisse legen nahe, dass insbesondere hohe Leistungen am Kohlenstoffaktivgitter bei gleichzeitiger Zugabe sauerstoffhaltiger Gase in der Erzeugung stickstoffreicher, einphasiger ε-Verbindungsschichten resultieren.


* Lecture held at the HeatTreatingCongress, HK 2021, 27.–28. October 2021, online Continued presentation on “Active screen plasma nitrocarburising with carbon solid source: Generation of single-phase ε-Fe2-3(N,C)-compound layers”, given at the 2021 Hardening Congress


Acknowledgement

The authors appreciate the German Research Foundation (DFG) for financial support in the framework of the projects (project number 289846720) BI 418/31-2 and RO 2202/10-1. Furthermore, the authors thank Dr.-Ing. Christian Schimpf for performing the XRD analysis (TU Bergakademie Freiberg, Institute of Materials Science)

Danksagung

Die Autoren danken der Deutschen Forschungsgemeinschaft (DFG) für die finanzielle Unterstützung im Rahmen der Forschungsprojekte (Projektnummer 289846720) BI 418/31-2 und RO 2202/10-2. Weiterhin danken die Autoren Dr.-Ing. Christian Schimpf für die Durchführung der XRD-Analyse (TU Bergakademie Freiberg, Institut für Werkstoffwissenschaft).

Referenzen

1 Spies, H.-J.: 6 – Corrosion behaviour of nitrided, nitrocarburised and carburised steels. Thermochemical Surface Engineering of Steels, E. J. Mittemeijer, M. A. J. Somers, (eds.), Woodhead Cambridge, Swaston, UK, 2015, pp. 267–309. – ISBN: 978085709592310.1533/9780857096524.2.267Search in Google Scholar

2 Dearnley, P. A.; Matthews, A.; Leyland A.: 5 – Tribological behaviour of thermochemically surface engineered steels. Thermochemical Surface Engineering of Steels, E. J. Mittemeijer, M. A. J. Somers, (eds.), Woodhead Publishing, Cambridge, UK, 2015, pp. 241–266. – ISBN: 978085709592310.1533/9780857096524.2.241Search in Google Scholar

3 Somers, M. A. J.: 8 – Development of the compound layer during nitriding and nitrocarburising of iron and iron-carbon alloys. Thermochemical Surface Engineering of Steels, E. J. Mittemeijer, M. A. J. Somers, (eds.), Woodhead Publishing, Cambridge, UK, 2015, pp. 341–373, DOI:10.1533/9780857096524.3.34110.1533/9780857096524.3.341Search in Google Scholar

4 Kunze, J.: Thermodynamische Gleichgewichte im System Eisen-Stickstoff-Kohlenstoff. HTM J. Heat Treatm. Mat. 51 (1996) 6, pp. 348–354, DOI:10.1515/htm-1996-51060610.1515/htm-1996-510606Search in Google Scholar

5 US Patent 5,989,363: Nitriding process and nitriding furnace therefore. United States patent, November 23rd, 1999Search in Google Scholar

6 Ricard, A.: Spectroscopy of flowing discharges and post-discharges in reactive gases. Surf. Coat. Technol. 59 (1993), pp. 67–76, DOI:10.1016/0257-8972(93)90056-T10.1016/0257-8972(93)90056-TSearch in Google Scholar

7 Jafarpour, S. M.; Puth, A.; Dalke, A.; Böcker, J.; Pipa, A. V.; Röpcke, J.; van Helden, J.-P. H.; Biermann, H.: Solid carbon active screen plasma nitrocarburizing of AISI 316L stainless steel in cold wall reactor: influence of plasma conditions. J. Mat. Res. Technol. 9 (2020) 4, pp. 9195–9205, DOI:10.1016/j.jmrt.2020.06.04110.1016/j.jmrt.2020.06.041Search in Google Scholar

8 Hubbard, P.; Dowey, S. J.; Doyle, E. D.; McCulloch, D. G.: Influence of bias and in situ cleaning on through cage (TC) or active screen plasma nitride (ASPN) steels. Surf. Eng. 22 (2006) 4, pp. 243–247, DOI:10.1179/174329406X12293710.1179/174329406X122937Search in Google Scholar

9 Burlacov, I.; Spies, H.-J.; Biermann, H.; Börner, K.: Untersuchungen zum Plasmanitrieren von Stählen mit einem Aktivgitter. HTM J. Heat Treatm. Mat. 66 (2011) 3, pp. 127–134, DOI:10.3139/105.11010210.3139/105.110102Search in Google Scholar

10 Puth, A.; Kusýn, L.; Pipa, A. V.; Burlacov, I.; Dalke, A.; Hamann, S.; van Helden, J.-P. H.; Biermann, H.; Röpcke, J.: Spectroscopic study of plasma nitrocarburizing processes with an industrial-scale carbon active screen. Plasma Sources Sci. Technol. 29 (2020) 3, 35001, DOI:10.1088/1361-6595/ab6e5810.1088/1361-6595/ab6e58Search in Google Scholar

11 Bell, T.; Sun, Y.; Suhadi, A.: Environmental and technical aspects of plasma nitrocarburising. Vacuum 59 (2000) 1, pp. 14–23, DOI:10.1016/S0042-207X(00)00250-510.1016/S0042-207X(00)00250-5Search in Google Scholar

12 Heydarzadeh Sohi, M.; Ebrahimi, M.; Honarbakhsh Raouf, A.; Mahboubi, F.: Effect of plasma nitrocarburizing temperature on the wear behavior of AISI 4140 steel. Surf. Coat. Technol. 205 (2010) 1, pp. 84–89, DOI:10.1016/j.surfcoat. 2010.04.05410.1016/j.surfcoat.2010.04.054Search in Google Scholar

13 Ye, X; Wu, J.; Zhu, Y.; Hu, J.: A study of the effect of propane addition on plasma nitrocarburizing for AISI 1045 steel. Vacuum 110 (2014) 1-3, pp. 74–77, DOI:10.1016/j.vacuum.2014.08.01510.1016/j.vacuum.2014.08.015Search in Google Scholar

14 Basso, R .L. O.; Figueroa, C. A.; Zagonel, L. F.; Pastore, H. O.; Wisnivesky, D.; Alvarez, F.: Effect of Carbon on the Compound Layer Properties of AISI H13 Tool Steel in Pulsed Plasma Nitrocarburizing. Plasma Process. Polym. 4 (2007) S1, pp. 728–731, DOI:10.1002/ppap.20073180610.1002/ppap.200731806Search in Google Scholar

15 Haruman, E.; Bell, T.; Sun, Y.: Compound layer characteristics resulting from plasma nitrocarburising in atmospheres containing carbon dioxide gas additions. Surf. Eng. 8 (1992) 4, pp. 275–282, DOI:10.1179/sur.1992.8.4.27510.1179/sur.1992.8.4.275Search in Google Scholar

16 Dalke, A.; Burlacov, I.; Spies, H.-J.; Biermann, H.: Use of a solid carbon precursor for DC plasma nitrocarburizing of AISI 4140 steel. Vacuum 149 (2018) 3. pp. 146–149, DOI:10.1016/j.vacuum.2017.12.03310.1016/j.vacuum.2017.12.033Search in Google Scholar

17 Puth, A.; Hamann, S.; Kusýn, L.; Burlacov, I.; Dalke, A.; Spies, H.-J.; Biermann, H.; Röpcke, J.: Spectroscopic investigations of plasma nitrocarburizing processes using an active screen made of carbon in a model reactor. Plasma Sources Sci. Technol. 27 (2018) 7, 75017, DOI:10.1088/1361-6595/aad03510.1088/1361-6595/aad035Search in Google Scholar

18 Böcker, J.; Puth, A.; Dalke, A.; Röpcke, J.; van Helden, J.-P. H.; Biermann, H.: Influence of the Active Screen Plasma Power during Afterglow Nitrocarburizing on the Surface Modification of AISI 316L. Coatings 10 (2020) 11, 1112, DOI:10.3390/coatings1011111210.3390/coatings10111112Search in Google Scholar

19 Böcker, J.; Dalke, A.; Puth, A.; Schimpf, C.; Röpcke, J.; van Helden, J.-P. H.; Biermann, H.: Influence of Oxygen Admixture on Plasma Nitrocarburizing Process and Monitoring of an Active Screen Plasma Treatment. Appl. Sci. 11 (2021) 21, 9918, DOI:10.3390/app1121991810.3390/app11219918Search in Google Scholar

20 Dalke, A.; Burlacov, I.; Hamann, S.; Puth, A.; Böcker, J.; Spies, H.-J.; Röpcke, J.; Biermann, H.: Solid carbon active screen plasma nitrocarburizing of AISI 316L stainless steel: Influence of N2-H2 gas composition on structure and properties of expanded austenite. Surf. Coat. Technol. 357 (2019), pp. 1060–1068, DOI:10.1016/j. surfcoat.2018.10.09510.1016/j. surfcoat.2018.10.095Search in Google Scholar

21 Lutterotti, L., Matthies, S.; Wenk, H. R.: MAUD: a friendly Java program for material analysis using diffraction. IUCr: Newsletter of the CPD, 21, 14–15, 1999Search in Google Scholar

22 Röpcke, J.; Lombardi, G.; Rousseau, A.; Davies, P. B.: Application of mid-infrared tuneable diode laser absorption spectroscopy to plasma diagnostics: a review. Plasma Sources Sci. Technol. 15 (2006) 4, S148–S168, DOI:10.1088/0963-0252/15/4/S0210.1088/0963-0252/15/4/S02Search in Google Scholar

23 Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Röpcke, J.: Spectroscopic Investigations of Plasma Nitriding and Nitrocarburizing Processes Using an Active Screen: A Comparative Plasma Chemical Study of Two Reactor Types. Contrib. Plasma Phys. 55 (2015) 10, pp. 689–700, DOI:10.1002/ctpp.20151001910.1002/ctpp.201510019Search in Google Scholar

24 Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Röpcke, J.: Spectroscopic diagnostics of active screen plasma nitriding processes: on the interplay of active screen and model probe plasmas. Plasma Sources Sci. Technol. 48 (2015) 34, 345204, DOI:10.1088/0022-3727/48/34/34520410.1088/0022-3727/48/34/345204Search in Google Scholar

25 Gordon, I. E.; Rothman, L. S.; Hargreaves, R. J.; Hashemi, R.; Karlovets, E. V.; Skinner, F. M.; Conway, E. K.; Hill, C.; Kochanov, R. V.; Tan, Y.; Wcisło, P.; Finenko, A. A.; Nelson, K.; Bernath, P .F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K. V.; Coustenis, A.; Drouin, B. J.; Flaud, J.–M. et al.: The HIT-RAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 277 (2022) 11, 107949, DOI:10.1016/j.jqsrt.2021.10794910.1016/j.jqsrt.2021.107949Search in Google Scholar

26 Liedtke, D.; Baudis, U.; Boßlet, J.; Huchel, U.; Lerche, W.; Spies, H.-J.; Klümper-Westkamp, H.: Wärmebehandlung von Eisenwerkstoffen II: Nitrieren und Nitrocarburieren, 7., neu bearbeitete Aufl., Kontakt & Studium 686, expert verlag, Tübingen, 2018. – ISBN: 9783816984023Search in Google Scholar

27 Burlacov, I.; Hamann S.; Spies, H.-J.; Röpcke, J.; Biermann, H.: In-line Process Control in the Active Screen Plasma Nitrocarburizing Using a Combined Approach Based on Infrared Laser Absorption Spectroscopy and Bias Power Management. HTM J. Heat Treatm. Mat. 71 (2016) 4, pp. 141–147, DOI:10.3139/105.11029210.3139/105.110292Search in Google Scholar

28 Göhring, H.; Kante, S.; Leineweber, A.; Mittemeijer, E. J.: Microstructural development and crystallographic properties of decomposing Fe–N–C compound. Mater. Res. 107 (2016) 3, pp. 203–216, DOI:10.3139/146.11133010.3139/146.111330Search in Google Scholar

29 Spies, H.-J.; Reinhold, B.; Berg, H.-J.: Einfluss von Sauerstoff beim Plasmanitrieren. HTM J. Heat Treatm. Mat. 62 (2007) 1, pp. 13–18, DOI:10.3139/105.10040410.3139/105.100404Search in Google Scholar

30 Sproge, L.; Slycke, J.: Control of the Compound-Layer Structure in Gaseous Nitrocarburising. MSF 102–104 (1992), pp. 229–242, DOI:10.4028/www.scientific. net/MSF.102-104.22910.4028/www.scientific.net/MSF.102-104.229Search in Google Scholar

31 Hoffmann, R.; Mittemeijer, E. J.: Abkühlen nach dem Nitrieren/Nitrocarburieren. HTM J. Heat Treatm. Mat. 56 (2001) 3, pp. 155–160Search in Google Scholar

32 Lampe, T.; Eisenberg, S.; Laudien, G.: Verbindungsschichtbildung während der Plasmanitrierung und -nitrocarburierung. HTM J. Heat Treatm. Mat. 46 (1991) 5, pp. 308–316, DOI:10.1515/htm-1991-46051510.1515/htm-1991-460515Search in Google Scholar

33 Günther, D.; Hirsch, T.; Hoffmann, F.; Mayr, P.: Einfluß der Plasmaparameter auf die Schichtstruktur beim Plasmanitrocarburieren. HTM J. Heat Treatm. Mat. 53 (1998) 4, pp. 203–209Search in Google Scholar

34 Börner, K.; Spies, H.-J.; Burlacov, I.; Biermann, H.: Kontrolliertes Plasmanitrieren von Stählen mit einem Aktivgitter. HTM J. Heat Treatm. Mat. 68 (2013) 3, pp. 124–132, DOI:10.3139/105.11018610.3139/105.110186Search in Google Scholar

Published Online: 2022-10-11
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/htm-2022-1026/html
Scroll to top button