Home Life Sciences The BCL11A transcription factor stimulates the enzymatic activities of the OGG1 DNA glycosylase
Article
Licensed
Unlicensed Requires Authentication

The BCL11A transcription factor stimulates the enzymatic activities of the OGG1 DNA glycosylase

  • Tetiana Petrachkova , Olha Soldatkina , Lam Leduy and Alain Nepveu ORCID logo EMAIL logo
Published/Copyright: September 16, 2024

Abstract

The BCL11A transcription factor has previously been shown to interact with and stimulate the enzymatic activities of the NTHL1 DNA glycosylase and Pol β polymerase. Here we show that BCL11A and a smaller peptide encompassing amino acids 160 to 520 can interact with the 8-oxoguanine DNA glycosylase, OGG1, increase the binding of OGG1 to DNA that contains an 8-oxoguanine base and stimulate the glycosylase activity of OGG1. Following BCL11A knockdown, we observed an increase in oxidized purines in the genome using comet assays, while immunoassays reveal an increase in 8-oxoG bases. Structure-function analysis indicates that the stimulation of OGG1 by BCL11A requires the zinc fingers 1, 2 and 3 as well as the proline-rich region between the first and second zing finger, but a glutamate-rich region downstream of zinc finger 3 is dispensable. Ectopic expression of a small peptide that contains the three zinc fingers can rescue the increase in 8-oxoguanine caused by BCL11A knockdown. These findings, together with previous results showing that BCL11A stimulates the enzymatic activities of NTHL1 and the Pol β polymerase, suggest that high expression of BCL11A is important to protect cancer cells against oxidative DNA damage.


Corresponding author: Alain Nepveu, Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada; and Departments of Oncology, Biochemistry, and Medicine, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada, E-mail:

Award Identifier / Grant number: CIHR, MOP-391532

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Tetiana Petrachkova: investigation, methodology, validation, formal analysis, visualization, writing-reviewing and editing. Olga Soldatkina: resources. Lam Leduy: investigation, methodology, supervision. Alain Nepveu: conceptualization, methodology, writing – original draft, writing – review and editing, supervision, project administration, funding acquisition.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work was supported by the Canadian Institutes of Health Research (CIHR, MOP- 391532) to A.N. T.P. and O.S. were supported by Fonds de recherche du Québec-Santé (FRQS).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

Amen, A.M., Loughran, R.M., Huang, C.H., Lew, R.J., Ravi, A., Guan, Y., Schatoff, E.M., Dow, L.E., Emerling, B.M., and Fellmann, C. (2022). Endogenous spacing enables co-processing of microRNAs and efficient combinatorial RNAi. Cell Rep. Methods 2: 100239, https://doi.org/10.1016/j.crmeth.2022.100239.Search in Google Scholar PubMed PubMed Central

Avram, D., Fields, A., Pretty On Top, K., Nevrivy, D.J., Ishmael, J.E., and Leid, M. (2000). Isolation of a novel family of C(2)H(2) zinc finger proteins implicated in transcriptional repression mediated by chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan nuclear receptors. J. Biol. Chem. 275: 10315–10322, https://doi.org/10.1074/jbc.275.14.10315.Search in Google Scholar PubMed PubMed Central

Basu, T.N., Gutmann, D.H., Fletcher, J.A., Glover, T.W., Collins, F.S., and Downward, J. (1992). Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 356: 713–715, https://doi.org/10.1038/356713a0.Search in Google Scholar PubMed

Cadieux, C., Kedinger, V., Yao, L., Vadnais, C., Drossos, M., Paquet, M., and Nepveu, A. (2009). Mouse mammary tumor virus p75 and p110 CUX1 transgenic mice develop mammary tumors of various histologic types. Cancer Res. 69: 7188–7197, https://doi.org/10.1158/0008-5472.can-08-4899.Search in Google Scholar

Chakraborty, A., Tapryal, N., Islam, A., Mitra, S., and Hazra, T. (2021). Transcription coupled base excision repair in mammalian cells: so little is known and so much to uncover. DNA Repair 107: 103204, https://doi.org/10.1016/j.dnarep.2021.103204.Search in Google Scholar PubMed

Cheadle, J.P. and Sampson, J.R. (2007). MUTYH-associated polyposis--from defect in base excision repair to clinical genetic testing. DNA Repair 6: 274–279, https://doi.org/10.1016/j.dnarep.2006.11.001.Search in Google Scholar PubMed

Chemistry, J.o.B., Allinson, S.L., Dianova, II, and Dianov, G.L. (2001). DNA polymerase beta is the major dRP lyase involved in repair of oxidative base lesions in DNA by mammalian cell extracts. EMBO J. 20: 6919–6926, https://doi.org/10.1093/emboj/20.23.6919.Search in Google Scholar PubMed PubMed Central

Cintori, L., Di Guilmi, A.M., Canitrot, Y., Huet, S., and Campalans, A. (2023). Spatio-temporal dynamics of the DNA glycosylase OGG1 in finding and processing 8-oxoguanine. DNA Repair 129: 103550, https://doi.org/10.1016/j.dnarep.2023.103550.Search in Google Scholar PubMed

Collins, A., Moller, P., Gajski, G., Vodenkova, S., Abdulwahed, A., Anderson, D., Bankoglu, E.E., Bonassi, S., Boutet-Robinet, E., Brunborg, G., et al.. (2023). Measuring DNA modifications with the comet assay: a compendium of protocols. Nat. Protoc. 18: 929–989, https://doi.org/10.1038/s41596-022-00754-y.Search in Google Scholar PubMed PubMed Central

Das, S., Chattopadhyay, R., Bhakat, K.K., Boldogh, I., Kohno, K., Prasad, R., Wilson, S.H., and Hazra, T.K. (2007). Stimulation of NEIL2-mediated oxidized base excision repair via YB-1 interaction during oxidative stress. J. Biol. Chem. 282: 28474–28484, https://doi.org/10.1074/jbc.M704672200.Search in Google Scholar PubMed PubMed Central

DeClue, J.E., Papageorge, A.G., Fletcher, J.A., Diehl, S.R., Ratner, N., Vass, W.C., and Lowy, D.R. (1992). Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 69: 265–273, https://doi.org/10.1016/0092-8674(92)90407-4.Search in Google Scholar PubMed

Demple, B. and Harrison, L. (1994). Repair of oxidative damage to DNA: enzymology and biology. Annu. Rev. Biochem. 63: 915–948, https://doi.org/10.1146/annurev.bi.63.070194.004411.Search in Google Scholar PubMed

Demple, B. and Sung, J.S. (2005). Molecular and biological roles of Ape1 protein in mammalian base excision repair. DNA Repair 4: 1442–1449, https://doi.org/10.1016/j.dnarep.2005.09.004.Search in Google Scholar PubMed

Dianov, G.L. and Hubscher, U. (2013). Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res. 41: 3483–3490, https://doi.org/10.1093/nar/gkt076.Search in Google Scholar PubMed PubMed Central

Esrick, E.B., Lehmann, L.E., Biffi, A., Achebe, M., Brendel, C., Ciuculescu, M.F., Daley, H., MacKinnon, B., Morris, E., Federico, A., et al.. (2021). Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N. Engl. J. Med. 384: 205–215, https://doi.org/10.1056/NEJMoa2029392.Search in Google Scholar PubMed PubMed Central

Guay, D., Garand, C., Reddy, S., Schmutte, C., and Lebel, M. (2008). The human endonuclease III enzyme is a relevant target to potentiate cisplatin cytotoxicity in Y-box-binding protein-1 overexpressing tumor cells. Cancer Sci. 99: 762–769, https://doi.org/10.1111/j.1349-7006.2008.00739.x.Search in Google Scholar PubMed PubMed Central

Hatahet, Z., Kow, Y.W., Purmal, A.A., Cunningham, R.P., and Wallace, S.S. (1994). New substrates for old enzymes. 5-Hydroxy-2’-deoxycytidine and 5-hydroxy-2′-deoxyuridine are substrates for Escherichia coli endonuclease III and formamidopyrimidine DNA N-glycosylase, while 5-hydroxy-2′-deoxyuridine is a substrate for uracil DNA N-glycosylase. J. Biol. Chem. 269: 18814–18820, https://doi.org/10.1016/s0021-9258(17)32239-1.Search in Google Scholar

Hegde, M.L., Banerjee, S., Hegde, P.M., Bellot, L.J., Hazra, T.K., Boldogh, I., and Mitra, S. (2012). Enhancement of NEIL1 protein-initiated oxidized DNA base excision repair by heterogeneous nuclear ribonucleoprotein U (hnRNP-U) via direct interaction. J. Biol. Chem. 287: 34202–34211, https://doi.org/10.1074/jbc.M112.384032.Search in Google Scholar PubMed PubMed Central

Hegde, M.L., Hazra, T.K., and Mitra, S. (2008). Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res. 18: 27–47, https://doi.org/10.1038/cr.2008.8.Search in Google Scholar PubMed PubMed Central

Hill, J.W. and Evans, M.K. (2006). Dimerization and opposite base-dependent catalytic impairment of polymorphic S326C OGG1 glycosylase. Nucleic Acids Res. 34: 1620–1632, https://doi.org/10.1093/nar/gkl060.Search in Google Scholar PubMed PubMed Central

Horton, J.K., Prasad, R., Hou, E., and Wilson, S.H. (2000). Protection against methylation-induced cytotoxicity by DNA polymerase beta-dependent long patch base excision repair. J. Biol. Chem. 275: 2211–2218, https://doi.org/10.1074/jbc.275.3.2211.Search in Google Scholar PubMed

Huang, X., Powell, J., Mooney, L.A., Li, C., and Frenkel, K. (2001). Importance of complete DNA digestion in minimizing variability of 8-oxo-dG analyses. Free Radic. Biol. Med. 31: 1341–1351, https://doi.org/10.1016/s0891-5849(01)00681-5.Search in Google Scholar PubMed

Irani, K., Xia, Y., Zweier, J.L., Sollott, S.J., Der, C.J., Fearon, E.R., Sundaresan, M., Finkel, T., and Goldschmidt-Clermont, P.J. (1997). Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275: 1649–1652, https://doi.org/10.1126/science.275.5306.1649.Search in Google Scholar PubMed

Kaur, S., Coulombe, Y., Ramdzan, Z.M., Leduy, L., Masson, J.Y., and Nepveu, A. (2016). Special AT-rich sequence-binding protein 1 (SATB1) functions as an accessory factor in base excision repair. J. Biol. Chem. 291: 22769–22780, https://doi.org/10.1074/jbc.M116.735696.Search in Google Scholar PubMed PubMed Central

Khaled, W.T., Choon Lee, S., Stingl, J., Chen, X., Raza Ali, H., Rueda, O.M., Hadi, F., Wang, J., Yu, Y., Chin, S.F., et al.. (2015). BCL11A is a triple-negative breast cancer gene with critical functions in stem and progenitor cells. Nat. Commun. 6: 5987, https://doi.org/10.1038/ncomms6987.Search in Google Scholar PubMed PubMed Central

Lee, A.C., Fenster, B.E., Ito, H., Takeda, K., Bae, N.S., Hirai, T., Yu, Z.X., Ferrans, V.J., Howard, B.H., and Finkel, T. (1999). Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 274: 7936–7940, https://doi.org/10.1074/jbc.274.12.7936.Search in Google Scholar PubMed

Liu, N., Hargreaves, V.V., Zhu, Q., Kurland, J.V., Hong, J., Kim, W., Sher, F., Macias-Trevino, C., Rogers, J.M., Kurita, R., et al.. (2018). Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell 173: 430–442.e417, https://doi.org/10.1016/j.cell.2018.03.016.Search in Google Scholar PubMed PubMed Central

Liu, P., Keller, J.R., Ortiz, M., Tessarollo, L., Rachel, R.A., Nakamura, T., Jenkins, N.A., and Copeland, N.G. (2003). Bcl11a is essential for normal lymphoid development. Nat. Immunol. 4: 525–532, https://doi.org/10.1038/ni925.Search in Google Scholar PubMed

Loew, R., Heinz, N., Hampf, M., Bujard, H., and Gossen, M. (2010). Improved Tet-responsive promoters with minimized background expression. BMC Biotechnol. 10: 81, https://doi.org/10.1186/1472-6750-10-81.Search in Google Scholar PubMed PubMed Central

Luo, J., Emanuele, M.J., Li, D., Creighton, C.J., Schlabach, M.R., Westbrook, T.F., Wong, K.K., and Elledge, S.J. (2009). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137: 835–848, https://doi.org/10.1016/j.cell.2009.05.006.Search in Google Scholar PubMed PubMed Central

Marenstein, D.R., Ocampo, M.T., Chan, M.K., Altamirano, A., Basu, A.K., Boorstein, R.J., Cunningham, R.P., and Teebor, G.W. (2001). Stimulation of human endonuclease III by Y box-binding protein 1 (DNA-binding protein B). Interaction between a base excision repair enzyme and a transcription factor. J. Biol. Chem. 276: 21242–21249, https://doi.org/10.1074/jbc.M101594200.Search in Google Scholar PubMed

Martin, G.A., Viskochil, D., Bollag, G., McCabe, P.C., Crosier, W.J., Haubruck, H., Conroy, L., Clark, R., O’Connell, P., Cawthon, R.M., et al.. (1990). The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63: 843–849, https://doi.org/10.1016/0092-8674(90)90150-d.Search in Google Scholar PubMed

Masuda, T., Wang, X., Maeda, M., Canver, M.C., Sher, F., Funnell, A.P., Fisher, C., Suciu, M., Martyn, G.E., Norton, L.J., et al.. (2016). Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science 351: 285–289, https://doi.org/10.1126/science.aad3312.Search in Google Scholar PubMed PubMed Central

Mitsushita, J., Lambeth, J.D., and Kamata, T. (2004). The superoxide-generating oxidase Nox1 is functionally required for Ras oncogene transformation. Cancer Res. 64: 3580–3585, https://doi.org/10.1158/0008-5472.Can-03-3909.Search in Google Scholar PubMed

Moon, N.S., Premdas, P., Truscott, M., Leduy, L., Berube, G., and Nepveu, A. (2001). S phase-specific proteolytic cleavage is required to activate stable DNA binding by the CDP/cut homeodomain protein. Mol. Cell. Biol. 21: 6332–6345, https://doi.org/10.1128/mcb.21.18.6332-6345.2001.Search in Google Scholar

Nakamura, T., Yamazaki, Y., Saiki, Y., Moriyama, M., Largaespada, D.A., Jenkins, N.A., and Copeland, N.G. (2000). Evi9 encodes a novel zinc finger protein that physically interacts with BCL6, a known human B-cell proto-oncogene product. Mol. Cell. Biol. 20: 3178–3186, https://doi.org/10.1128/MCB.20.9.3178-3186.2000.Search in Google Scholar PubMed PubMed Central

Orkin, S.H. and Bauer, D.E. (2019). Emerging genetic therapy for sickle cell disease. Annu. Rev. Med. 70: 257–271, https://doi.org/10.1146/annurev-med-041817-125507.Search in Google Scholar PubMed

Pal, R., Ramdzan, Z.M., Kaur, S., Duquette, P.M., Marcotte, R., Leduy, L., Davoudi, S., Lamarche-Vane, N., Iulianella, A., and Nepveu, A. (2015). CUX2 functions as an accessory factor in the repair of oxidative DNA damage. J. Biol. Chem. 290: 22520–22531, https://doi.org/10.1074/jbc.M115.651042.Search in Google Scholar PubMed PubMed Central

Pelossof, R., Fairchild, L., Huang, C.H., Widmer, C., Sreedharan, V.T., Sinha, N., Lai, D.Y., Guan, Y., Premsrirut, P.K., Tschaharganeh, D.F., et al.. (2017). Prediction of potent shRNAs with a sequential classification algorithm. Nat. Biotechnol. 35: 350–353, https://doi.org/10.1038/nbt.3807.Search in Google Scholar PubMed PubMed Central

Philippidis, A. (2024). CASGEVY makes history as FDA approves first CRISPR/Cas9 genome edited therapy. Hum. Gene Ther. 35: 1–4, https://doi.org/10.1089/hum.2023.29263.bfs.Search in Google Scholar PubMed

Prasad, R., Liu, Y., Deterding, L.J., Poltoratsky, V.P., Kedar, P.S., Horton, J.K., Kanno, S., Asagoshi, K., Hou, E.W., Khodyreva, S.N., et al.. (2007). HMGB1 is a cofactor in mammalian base excision repair. Mol. Cell 27: 829–841, https://doi.org/10.1016/j.molcel.2007.06.029.Search in Google Scholar PubMed PubMed Central

Ramdzan, Z.M., Ginjala, V., Pinder, J.B., Chung, D., Donovan, C.M., Kaur, S., Leduy, L., Dellaire, G., Ganesan, S., and Nepveu, A. (2017). The DNA repair function of CUX1 contributes to radioresistance. Oncotarget 8: 19021–19038, https://doi.org/10.18632/oncotarget.14875.Search in Google Scholar PubMed PubMed Central

Ramdzan, Z.M., Pal, R., Kaur, S., Leduy, L., Berube, G., Davoudi, S., Vadnais, C., and Nepveu, A. (2015). The function of CUX1 in oxidative DNA damage repair is needed to prevent premature senescence of mouse embryo fibroblasts. Oncotarget 6: 3613–3626, https://doi.org/10.18632/oncotarget.2919.Search in Google Scholar PubMed PubMed Central

Ramdzan, Z.M., Vadnais, C., Pal, R., Vandal, G., Cadieux, C., Leduy, L., Davoudi, S., Hulea, L., Yao, L., Karnezis, A.N., et al.. (2014). RAS transformation requires CUX1-dependent repair of oxidative DNA damage. PLoS Biol. 12: e1001807, https://doi.org/10.1371/journal.pbio.1001807.Search in Google Scholar PubMed PubMed Central

Ramdzan, Z.M., Vickridge, E., Li, L., Faraco, C.C.F., Djerir, B., Leduy, L., Marechal, A., and Nepveu, A. (2021). CUT domains stimulate pol beta enzymatic activities to accelerate completion of base excision repair. J. Mol. Biol. 433: 166806, https://doi.org/10.1016/j.jmb.2020.166806.Search in Google Scholar PubMed

Rivera, B., Castellsague, E., Bah, I., van Kempen, L.C., and Foulkes, W.D. (2015). Biallelic NTHL1 mutations in a woman with multiple primary tumors. N. Engl. J. Med. 373: 1985–1986, https://doi.org/10.1056/NEJMc1506878.Search in Google Scholar PubMed

Rocha, C.R.R., Lerner, L.K., Okamoto, O.K., Marchetto, M.C., and Menck, C.F.M. (2013). The role of DNA repair in the pluripotency and differentiation of human stem cells. Mutat. Res. 752: 25–35, https://doi.org/10.1016/j.mrrev.2012.09.001.Search in Google Scholar PubMed

Saiki, Y., Yamazaki, Y., Yoshida, M., Katoh, O., and Nakamura, T. (2000). Human EVI9, a homologue of the mouse myeloid leukemia gene, is expressed in the hematopoietic progenitors and down-regulated during myeloid differentiation of HL60 cells. Genomics 70: 387–391, https://doi.org/10.1006/geno.2000.6385.Search in Google Scholar PubMed

Sankaran, V.G., Menne, T.F., Xu, J., Akie, T.E., Lettre, G., Van Handel, B., Mikkola, H.K., Hirschhorn, J.N., Cantor, A.B., and Orkin, S.H. (2008). Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322: 1839–1842, https://doi.org/10.1126/science.1165409.Search in Google Scholar PubMed

Sankaran, V.G., Xu, J., Byron, R., Greisman, H.A., Fisher, C., Weatherall, D.J., Sabath, D.E., Groudine, M., Orkin, S.H., Premawardhena, A., et al.. (2011). A functional element necessary for fetal hemoglobin silencing. N. Engl. J. Med. 365: 807–814, https://doi.org/10.1056/NEJMoa1103070.Search in Google Scholar PubMed PubMed Central

Sankaran, V.G., Xu, J., Ragoczy, T., Ippolito, G.C., Walkley, C.R., Maika, S.D., Fujiwara, Y., Ito, M., Groudine, M., Bender, M.A., et al.. (2009). Developmental and species-divergent globin switching are driven by BCL11A. Nature 460: 1093–1097, https://doi.org/10.1038/nature08243.Search in Google Scholar PubMed PubMed Central

Satterwhite, E., Sonoki, T., Willis, T.G., Harder, L., Nowak, R., Arriola, E.L., Liu, H., Price, H.P., Gesk, S., Steinemann, D., et al.. (2001). The BCL11 gene family: involvement of BCL11A in lymphoid malignancies. Blood 98: 3413–3420, https://doi.org/10.1182/blood.v98.12.3413.Search in Google Scholar PubMed

Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., and Lowe, S.W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602, https://doi.org/10.1016/s0092-8674(00)81902-9.Search in Google Scholar PubMed

Shimbo, H., Yokoi, T., Aida, N., Mizuno, S., Suzumura, H., Nagai, J., Ida, K., Enomoto, Y., Hatano, C., and Kurosawa, K. (2017). Haploinsufficiency of BCL11A associated with cerebellar abnormalities in 2p15p16.1 deletion syndrome. Mol. Genet Genomic. Med. 5: 429–437, https://doi.org/10.1002/mgg3.289.Search in Google Scholar PubMed PubMed Central

Simon, R., Wiegreffe, C., and Britsch, S. (2020). Bcl11 transcription factors regulate cortical development and function. Front. Mol. Neurosci. 13: 51, https://doi.org/10.3389/fnmol.2020.00051.Search in Google Scholar PubMed PubMed Central

Singh, B., Bhat, N.K., and Bhat, H.K. (2012). Induction of NAD(P)H-quinone oxidoreductase 1 by antioxidants in female ACI rats is associated with decrease in oxidative DNA damage and inhibition of estrogen-induced breast cancer. Carcinogenesis 33: 156–163, https://doi.org/10.1093/carcin/bgr237.Search in Google Scholar PubMed PubMed Central

Soblet, J., Dimov, I., Graf von Kalckreuth, C., Cano-Chervel, J., Baijot, S., Pelc, K., Sottiaux, M., Vilain, C., Smits, G., and Deconinck, N. (2018). BCL11A frameshift mutation associated with dyspraxia and hypotonia affecting the fine, gross, oral, and speech motor systems. Am. J. Med. Genet. A 176: 201–208, https://doi.org/10.1002/ajmg.a.38479.Search in Google Scholar PubMed PubMed Central

Talseth-Palmer, B.A. (2017). The genetic basis of colonic adenomatous polyposis syndromes. Hered. Cancer Clin. Pract. 15: 5, https://doi.org/10.1186/s13053-017-0065-x.Search in Google Scholar PubMed PubMed Central

Trachootham, D., Alexandre, J., and Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 8: 579–591, https://doi.org/10.1038/nrd2803.Search in Google Scholar PubMed

Trachootham, D., Zhou, Y., Zhang, H., Demizu, Y., Chen, Z., Pelicano, H., Chiao, P.J., Achanta, G., Arlinghaus, R.B., Liu, J., et al.. (2006). Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10: 241–252, https://doi.org/10.1016/j.ccr.2006.08.009.Search in Google Scholar PubMed

Trivedi, R.N., Almeida, K.H., Fornsaglio, J.L., Schamus, S., and Sobol, R.W. (2005). The role of base excision repair in the sensitivity and resistance to temozolomide-mediated cell death. Cancer Res. 65: 6394–6400, https://doi.org/10.1158/0008-5472.CAN-05-0715.Search in Google Scholar PubMed

Trivedi, R.N., Wang, X.H., Jelezcova, E., Goellner, E.M., Tang, J.B., and Sobol, R.W. (2008). Human methyl purine DNA glycosylase and DNA polymerase beta expression collectively predict sensitivity to temozolomide. Mol. Pharmacol. 74: 505–516, https://doi.org/10.1124/mol.108.045112.Search in Google Scholar PubMed PubMed Central

Vickridge, E., Faraco, C.C.F., Lo, F., Rahimian, H., Liu, Z.Y., Tehrani, P.S., Djerir, B., Ramdzan, Z.M., Leduy, L., Marechal, A., et al.. (2024). The function of BCL11B in base excision repair contributes to its dual role as an oncogene and a haplo-insufficient tumor suppressor gene. Nucleic Acids Res. 52: 223–242, https://doi.org/10.1093/nar/gkad1037.Search in Google Scholar PubMed PubMed Central

Vickridge, E., Faraco, C.C.F., Tehrani, P.S., Ramdzan, Z.M., Djerir, B., Rahimian, H., Leduy, L., Maréchal, A., Gingras, A.C., and Nepveu, A. (2022). The DNA repair function of BCL11A suppresses senescence and promotes continued proliferation of triple-negative breast cancer cells. NAR Cancer 4: zcac028, https://doi.org/10.1093/narcan/zcac028.Search in Google Scholar PubMed PubMed Central

Weinfeld, M., Mani, R.S., Abdou, I., Aceytuno, R.D., and Glover, J.N. (2011). Tidying up loose ends: the role of polynucleotide kinase/phosphatase in DNA strand break repair. Trends Bioc. Sci. 36: 262–271, https://doi.org/10.1016/j.tibs.2011.01.006.Search in Google Scholar PubMed PubMed Central

Weniger, M.A., Pulford, K., Gesk, S., Ehrlich, S., Banham, A.H., Lyne, L., Martin-Subero, J.I., Siebert, R., Dyer, M.J., Moller, P., et al.. (2006). Gains of the proto-oncogene BCL11A and nuclear accumulation of BCL11A(XL) protein are frequent in primary mediastinal B-cell lymphoma. Leukemia 20: 1880–1882, https://doi.org/10.1038/sj.leu.2404324.Search in Google Scholar PubMed

Weren, R.D., Ligtenberg, M.J., Kets, C.M., de Voer, R.M., Verwiel, E.T., Spruijt, L., van Zelst-Stams, W.A., Jongmans, M.C., Gilissen, C., Hehir-Kwa, J.Y., et al.. (2015). A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer. Nat. Genet. 47: 668–671, https://doi.org/10.1038/ng.3287.Search in Google Scholar PubMed

Weyemi, U., Lagente-Chevallier, O., Boufraqech, M., Prenois, F., Courtin, F., Caillou, B., Talbot, M., Dardalhon, M., Al Ghuzlan, A., Bidart, J.M., et al.. (2012). ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene 31: 1117–1129, https://doi.org/10.1038/onc.2011.327.Search in Google Scholar PubMed PubMed Central

Wiederhold, L., Leppard, J.B., Kedar, P., Karimi-Busheri, F., Rasouli-Nia, A., Weinfeld, M., Tomkinson, A.E., Izumi, T., Prasad, R., Wilson, S.H., et al.. (2004). AP endonuclease-independent DNA base excision repair in human cells. Mol. Cell 15: 209–220, https://doi.org/10.1016/j.molcel.2004.06.003.Search in Google Scholar PubMed

Wienert, B., Martyn, G.E., Funnell, A.P.W., Quinlan, K.G.R., and Crossley, M. (2018). Wake-up sleepy gene: reactivating fetal globin for beta-hemoglobinopathies. Trends Genet. 34: 927–940, https://doi.org/10.1016/j.tig.2018.09.004.Search in Google Scholar PubMed

Wilson, D.M. and Bohr, V.A. (2007). The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair 6: 544–559, https://doi.org/10.1016/j.dnarep.2006.10.017.Search in Google Scholar PubMed

Yao, Z., Aboualizadeh, F., Kroll, J., Akula, I., Snider, J., Lyakisheva, A., Tang, P., Kotlyar, M., Jurisica, I., Boxem, M., et al.. (2020). Split Intein-Mediated Protein Ligation for detecting protein-protein interactions and their inhibition. Nat. Commun. 11: 2440, https://doi.org/10.1038/s41467-020-16299-1.Search in Google Scholar PubMed PubMed Central

Yin, B., Delwel, R., Valk, P.J., Wallace, M.R., Loh, M.L., Shannon, K.M., and Largaespada, D.A. (2009). A retroviral mutagenesis screen reveals strong cooperation between Bcl11a overexpression and loss of the Nf1 tumor suppressor gene. Blood 113: 1075–1085, https://doi.org/10.1182/blood-2008-03-144436.Search in Google Scholar PubMed PubMed Central

Yin, J., Zhang, F., Tao, H., Ma, X., Su, G., Xie, X., Xu, Z., Zheng, Y., Liu, H., He, C., et al.. (2016). BCL11A expression in acute phase chronic myeloid leukemia. Leuk Res. 47: 88–92, https://doi.org/10.1016/j.leukres.2016.05.018.Search in Google Scholar PubMed

Yoshida, M., Nakashima, M., Okanishi, T., Kanai, S., Fujimoto, A., Itomi, K., Morimoto, M., Saitsu, H., Kato, M., Matsumoto, N., et al.. (2018). Identification of novel BCL11A variants in patients with epileptic encephalopathy: expanding the phenotypic spectrum. Clin. Genet. 93: 368–373, https://doi.org/10.1111/cge.13067.Search in Google Scholar PubMed

Young, T.W., Mei, F.C., Yang, G., Thompson-Lanza, J.A., Liu, J., and Cheng, X. (2004). Activation of antioxidant pathways in ras-mediated oncogenic transformation of human surface ovarian epithelial cells revealed by functional proteomics and mass spectrometry. Cancer Res. 64: 4577–4584, https://doi.org/10.1158/0008-5472.CAN-04-0222.Search in Google Scholar PubMed

Zhou, J., Ahn, J., Wilson, S.H., and Prives, C. (2001). A role for p53 in base excision repair. EMBO J. 20: 914–923, https://doi.org/10.1093/emboj/20.4.914.Search in Google Scholar PubMed PubMed Central

Zhou, X., Vink, M., Klaver, B., Berkhout, B., and Das, A.T. (2006). Optimization of the Tet-On system for regulated gene expression through viral evolution. Gene Ther. 13: 1382–1390, https://doi.org/10.1038/sj.gt.3302780.Search in Google Scholar PubMed

Received: 2024-06-10
Accepted: 2024-08-26
Published Online: 2024-09-16
Published in Print: 2024-12-17

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2024-0088/html
Scroll to top button