Home A novel NMDA receptor test model based on hiPSC-derived neural cells
Article
Licensed
Unlicensed Requires Authentication

A novel NMDA receptor test model based on hiPSC-derived neural cells

  • Paul Disse ORCID logo EMAIL logo , Isabel Aymanns ORCID logo , Nadine Ritter ORCID logo , Stefan Peischard , Lisanne Korn , Heinz Wiendl , Matthias Pawlowski , Stjepana Kovac , Sven G. Meuth ORCID logo , Thomas Budde ORCID logo , Nathalie Strutz-Seebohm , Bernhard Wünsch ORCID logo and Guiscard Seebohm ORCID logo
Published/Copyright: January 12, 2023

Abstract

N-Methyl-D-aspartate receptors (NMDARs) are central for learning and information processing in the brain. Dysfunction of NMDARs can play a key role in the pathogenesis of neurodegeneration and drug addiction. The development of selective NMDAR modulators represents a promising strategy to target these diseases. Among such modulating compounds are ifenprodil and its 3-benzazepine derivatives. Classically, the effects of these NMDAR modulators have been tested by techniques like two-electrode voltage clamp (TEVC), patch clamp, or fluorescence-based assays. However, testing their functional effects in complex human systems requires more advanced approaches. Here, we established a human induced pluripotent stem cell-derived (hiPSC-derived) neural cell system and proved its eligibility as a test system for investigating NMDAR modulators and pharmaceutical effects on human neurons.


Corresponding author: Paul Disse, Institut für Genetik von Herzerkrankungen (IfGH), Zelluläre Elektrophysiologie, Universitätsklinikum Münster, D-48149 Münster, Germany; and Chembion, GRK 2515, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany; E-mail:

Award Identifier / Grant number: GRK2515

Acknowledgments

We thank Anne Humberg for her excellent technical assistance.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Research Training Group “Chemical biology of ion channels (Chembion)” funded by the Deutsche Forschungsgemeinschaft (DFG) and the MedK Münster, which is gratefully acknowledged.

  3. Conflict of interest statement: The authors declare to have no competing interests.

References

Adell, A. (2020). Brain NMDA receptors in schizophrenia and depression. Biomolecules 10: 947, https://doi.org/10.3390/biom10060947.Search in Google Scholar PubMed PubMed Central

Ahmed, H., Wallimann, R., Haider, A., Hosseini, V., Gruber, S., Robledo, M., Nguyan, T., Müller Herde, A., Iten, I., Keller, C., et al.. (2021). Preclinical development of 18F-OF-NB1 for imaging GluN2B-containing N-Methyl-D-Aspartate receptors and its utility as a biomarker for amyotrophic lateral sclerosis. J. Nucl. Med. 62: 259–265, https://doi.org/10.2967/jnumed.120.246785.Search in Google Scholar PubMed

Berlese, D.B., Sauzem, P.D., Carati, M.C., Guerra, G.P., Stiegemeier, J.A., Mello, C.F., and Rubin, M.A. (2005). Time-dependent modulation of inhibitory avoidance memory by spermidine in rats. Neurobiol. Learn. Mem. 83: 48–53, https://doi.org/10.1016/j.nlm.2004.07.004.Search in Google Scholar PubMed

Borza, I. and Domány, G. (2006). NR2B selective NMDA antagonists: the evolution of the ifenprodil-type pharmacophore. Curr. Top. Med. Chem. 6: 687–695, https://doi.org/10.2174/156802606776894456.Search in Google Scholar PubMed

Bräuner-Osborne, H., Egebjerg, J., Nielsen, E.O., Madsen, U., and Krogsgaard-Larsen, P. (2000). Ligands for glutamate receptors: design and therapeutic prospects. J. Med. Chem. 43: 2609–2645, https://doi.org/10.1021/jm000007r.Search in Google Scholar PubMed

Colombres, M., Henríquez, J.P., Reig, G.F., Scheu, J., Calderón, R., Alvarez, A., Brandan, E., and Inestrosa, N.C. (2008). Heparin activates Wnt signaling for neuronal morphogenesis. J. Cell. Physiol. 216: 805–815, https://doi.org/10.1002/jcp.21465.Search in Google Scholar PubMed

Cull-Candy, S., Brickley, S., and Farrant, M. (2001). NMDA receptor subunits: diversity, development and disease. Curr. Opin. Neurobiol. 11: 327–335, https://doi.org/10.1016/s0959-4388(00)00215-4.Search in Google Scholar PubMed

D’Aiuto, L., Zhi, Y., Kumar Das, D., Wilcox, M.R., Johnson, J.W., McClain, L., MacDonald, M.L., Di Maio, R., Schurdak, M.E., Piazza, P., et al.. (2014). Large-scale generation of human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation. Organogenesis 10: 365–377, https://doi.org/10.1080/15476278.2015.1011921.Search in Google Scholar PubMed PubMed Central

Danysz, W. and Parsons, C.G. (1998). Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol. Rev. 50: 597–664.Search in Google Scholar

Falck, E., Begrow, F., Verspohl, E.J., and Wünsch, B. (2014). In vitro and in vivo biotransformation of WMS-1410, a potent GluN2B selective NMDA receptor antagonist. J. Pharm. Biomed. Anal. 94: 36–44, https://doi.org/10.1016/j.jpba.2014.01.017.Search in Google Scholar PubMed

Grynkiewicz, G., Poenie, M., and Tsien, R.Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260: 3440–3450, https://doi.org/10.1016/s0021-9258(19)83641-4.Search in Google Scholar

Haider, A., Müller Herde, A., Krämer, S.D., Varisco, J., Keller, C., Frauenknecht, K., Auberson, Y.P., Temme, L., Robaa, D., Sippl, W., et al.. (2019). Preclinical evaluation of benzazepine-based PET radioligands (R)-and (S)-11C-Me-NB1 reveals distinct enantiomeric binding patterns and a tightrope walk between GluN2B-and σ1-receptor-targeted PET imaging. J. Nucl. Med. 60: 1167–1173, https://doi.org/10.2967/jnumed.118.221051.Search in Google Scholar PubMed PubMed Central

Haider, A., Iten, I., Ahmed, H., Müller Herder, A., Gruber, S., Krämer, S.D., Keller, C., Schibli, R., Wünsch, B., Mu, L., et al.. (2018). Identification and preclinical evaluation of a radiofluorinated benzazepine derivative for imaging the GluN2B subunit of the ionotropic NMDA receptor. J. Nucl. Med. 60: 259–266, https://doi.org/10.2967/jnumed.118.212134.Search in Google Scholar PubMed PubMed Central

Hansen, K.B., Yi, F., Perszyk, R.E., Furukawa, H., Wollmuth, L.P., Gibb, A.J., and Traynelis, S.F. (2018). Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 150: 1081–1105, https://doi.org/10.1085/jgp.201812032.Search in Google Scholar PubMed PubMed Central

Hu, W., Tian, C., Li, T., Yang, M., Hou, H., and Shu, Y. (2009). Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nat. Neurosci. 12: 996–1002, https://doi.org/10.1038/nn.2359.Search in Google Scholar PubMed

Ivan Ezquerra-Romano, I., Lawn, W., Krupitsky, E., and Morgan, C.J.A. (2018). Ketamine for the treatment of addiction: evidence and potential mechanisms. Neuropharmacology 142: 72–82, https://doi.org/10.1016/j.neuropharm.2018.01.017.Search in Google Scholar PubMed

Ishima, T. and Hashimoto, K. (2012). Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by ifenprodil: the role of sigma-1 and IP3 receptors. PLoS One 7: e37989, https://doi.org/10.1371/journal.pone.0037989.Search in Google Scholar PubMed PubMed Central

Karakas, E. and Furukawa, H. (2014). Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344: 992–997, https://doi.org/10.1126/science.1251915.Search in Google Scholar PubMed PubMed Central

Lau, C.G. and Zukin, R.Z. (2007). NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat. Rev. Neurosci. 8: 413–426, https://doi.org/10.1038/nrn2153.Search in Google Scholar PubMed

Liu, J., Chang, L., Song, Y., Li, H., and Wu, Y. (2019). The role of NMDA receptors in alzheimer’s disease. Front. Neurosci. 13: 43, https://doi.org/10.3389/fnins.2019.00043.Search in Google Scholar PubMed PubMed Central

Mayer, M.L., Westbrook, G.L., and Guthrie, P.B. (1984). Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309: 261–263, https://doi.org/10.1038/309261a0.Search in Google Scholar PubMed

Mochida, S. (2019). Presynaptic calcium channels. Int. J. Mol. Sci. 20: 2217, https://doi.org/10.3390/ijms20092217.Search in Google Scholar PubMed PubMed Central

Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., and Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307: 462–465, https://doi.org/10.1038/307462a0.Search in Google Scholar PubMed

Paoletti, P., Bellone, C., and Zhou, Q. (2013). NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14: 383–400, https://doi.org/10.1038/nrn3504.Search in Google Scholar PubMed

Paoletti, P. and Neyton, J. (2007). NMDA receptor subunits: function and pharmacology. Curr. Opin. Pharmacol. 7: 39–47, https://doi.org/10.1016/j.coph.2006.08.011.Search in Google Scholar PubMed

Papouin, T., Ladépêche, L., Ruel, J., Sacchi, S., Labasque, M., Hanini, M., Groc, L., Pollegioni, L., Mothet, J.-P., and Oliet, S.H.R. (2012). Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150: 633–646, https://doi.org/10.1016/j.cell.2012.06.029.Search in Google Scholar PubMed

Rakovic, A., Voß, D., Vulinovic, F., Meier, B., Hellberg, A.-K., Nau, C., Klein, C., and Leipold, E. (2022). Electrophysiological properties of induced pluripotent stem cell-derived midbrain dopaminergic neurons correlate with expression of tyrosine hydroxylase. Front. Cell. Neurosci. 16: 817198, https://doi.org/10.3389/fncel.2022.817198.Search in Google Scholar PubMed PubMed Central

Renner, H., Becker, K.J., Kagermeier, T.E., Grabos, M., Eliat, F., Günther, P., Schöler, H.R., and Bruder, J.M. (2021). Cell-Type-specific high throughput toxicity testing in human midbrain organoids. Front. Mol. Neurosci. 14: 715054, https://doi.org/10.3389/fnmol.2021.715054.Search in Google Scholar PubMed PubMed Central

Renner, H., Grabos, M., Becker, K.J., Kagermeier, T.E., Wu, J., Otto, M., Peischard, S., Zeuschner, D., TsyTsyura, Disse, P., et al.. (2020). A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids. Elife 9: e52904, https://doi.org/10.7554/eLife.52904.Search in Google Scholar PubMed PubMed Central

Ritter, N., Korff, M., MarkusSchepmann, A.D., Seebohm, G., Schreiber, J.A., and Wünsch, B. (2021). Deconstruction-reconstruction: analysis of the crucial structural elements of GluN2B-selective, negative allosteric NMDA receptor modulators with 3-benzazepine scaffold. Cell. Physiol. Biochem. 55: 1–13, https://doi.org/10.33594/000000335.Search in Google Scholar PubMed

Rowe, R.G. and Daley, G.Q. (2019). Induced pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Genet. 20: 377–388, https://doi.org/10.1038/s41576-019-0100-z.Search in Google Scholar PubMed PubMed Central

Rujano, M.A., Pina, P., Servitja, J.M., Ahumada, A.M., Picatoste, F., Farrés, J., and Sabrià, J. (2004). Retinoic acid-induced differentiation into astrocytes and glutamatergic neurons is associated with expression of functional and activable phospholipase D. Biochem. Biophys. Res. Commun. 316: 387–392, https://doi.org/10.1016/j.bbrc.2004.02.057.Search in Google Scholar PubMed

Tewes, B., Frehland, B., Schepmann, D., Schmidtke, K.-U., Winckler, T., and Wünsch, B. (2010a). Conformationally constrained NR2B selective NMDA receptor antagonists derived from ifenprodil: synthesis and biological evaluation of tetrahydro-3-benzazepine-1,7-diols. Bioorg. Med. Chem. 18: 8005–8015, https://doi.org/10.1016/j.bmc.2010.09.026.Search in Google Scholar PubMed

Tewes, B., Frehland, B., Schepmann, D., Schmidtke, K.-U., Winckler, T., and Wünsch, B. (2010b). Design, synthesis, and biological evaluation of 3-Benzazepin-1-ols as NR2B-selective NMDA receptor antagonists. ChemMedChem 5: 687–695, https://doi.org/10.1002/cmdc.201000005.Search in Google Scholar PubMed

Tukker, A.M., de Groot, M.W.G.D.M., Wijnolts, F.M.J., Kasteel, E.E.J., Hondebrink, L., and Westerink, R.H.S. (2016). Is the time right for in vitro neurotoxicity testing using human iPSC-derived neurons? ALTEX 33: 261–271, https://doi.org/10.14573/altex.1510091.Search in Google Scholar PubMed

Watkins, J.C. and Evans, R.H. (1981). Excitatory amino acid transmitters. Annu. Rev. Pharmacol. Toxicol. 21: 165–204, https://doi.org/10.1146/annurev.pa.21.040181.001121.Search in Google Scholar PubMed

Wyllie, D.J.A., Livesey, M.R., and Hardingham, G.E. (2013). Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology 74: 4–17, https://doi.org/10.1016/j.neuropharm.2013.01.016.Search in Google Scholar PubMed PubMed Central

Yu, Y., Gu, S., Huang, H., and Wen, T. (2007). Combination of bFGF, heparin and laminin induce the generation of dopaminergic neurons from rat neural stem cells both in vitro and in vivo. J. Neurol. Sci. 255: 81–86, https://doi.org/10.1016/j.jns.2007.01.076.Search in Google Scholar PubMed


Supplementary Material

This article contains Supplementary material (https://doi.org/10.1515/hsz-2022-0216).


Received: 2022-06-30
Accepted: 2022-12-12
Published Online: 2023-01-12
Published in Print: 2023-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2022-0216/html?lang=en
Scroll to top button