Startseite Lebenswissenschaften Nitazoxanide inhibits osteosarcoma cells growth and metastasis by suppressing AKT/mTOR and Wnt/β-catenin signaling pathways
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nitazoxanide inhibits osteosarcoma cells growth and metastasis by suppressing AKT/mTOR and Wnt/β-catenin signaling pathways

  • Caihong Ye , Mengqi Wei , Huakun Huang , Yuping Wang , Lulu Zhang , Chunmei Yang , Yanran Huang und Jinyong Luo
Veröffentlicht/Copyright: 10. August 2022

Abstract

Osteosarcoma (OS) is the most prevalent malignant bone tumor with poor prognosis. Developing new drugs for the chemotherapy of OS has been a focal point and a major obstacle of OS treatment. Nitazoxanide (NTZ), a conventional anti-parasitic agent, has got increasingly noticed because of its favorable antitumor potential. Herein, we investigated the effect of NTZ on human OS cells in vitro and in vivo. The results obtained in vitro showed that NTZ inhibited the proliferation, migration and invasion, arrested cell cycle at G1 phase, while induced apoptosis of OS cells. Mechanistically, NTZ suppressed the activity of AKT/mTOR and Wnt/β-catenin signaling pathways of OS cells. Consistent with the results in vitro, orthotopic implantation model of 143B OS cells further confirmed that NTZ inhibited OS cells growth and lung metastasis in vivo. Notably, NTZ caused no apparent damage to normal cells/tissues. In conclusion, NTZ may inhibit tumor growth and metastasis of human OS cells through suppressing AKT/mTOR and Wnt/β-catenin signaling pathways.


Corresponding author: Jinyong Luo, Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, P.R. China, E-mail:
Caihong Ye and Mengqi Wei contributed equally to this work.

Funding source: the Natural Science Foundation Project of Chongqing Science and Technology Commission There is no funder DOI

Award Identifier / Grant number: cstc2017jcyjAX0196

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was supported by the Natural Science Foundation Project of Chongqing Science and Technology Commission (no. cstc2017jcyjAX0196).

  3. Conflict of interest statement: The authors declare that they have no competing interests.

References

Abbas, R. and Larisch, S. (2021). Killing by degradation: regulation of apoptosis by the ubiquitin-proteasome-system. Cells 10: 3465, doi:https://doi.org/10.3390/cells10123465.Suche in Google Scholar PubMed PubMed Central

Allison, D.C., Carney, S.C., Ahlmann, E.R., Hendifar, A., Chawla, S., Fedenko, A., Angeles, C., and Menendez, L.R. (2012). A meta-analysis of osteosarcoma outcomes in the modern medical era. Sarcoma 2012: 704872, https://doi.org/10.1155/2012/704872.Suche in Google Scholar PubMed PubMed Central

Barabás, L., Hritz, I., István, G., Tulassay, Z., and Herszényi, L. (2021). The behavior of MMP-2, MMP-7, MMP-9, and their inhibitors TIMP-1 and TIMP-2 in adenoma-colorectal cancer sequence. Dig. Dis. 39: 217–224, https://doi.org/10.1159/000511765.Suche in Google Scholar PubMed

Bharti, C., Sharma, S., Goswami, N., Sharma, H., Rabbani, S.A., and Kumar, S. (2021). Role of nitazoxanide as a repurposed drug in the treatment and management of various diseases. Drugs Today 57: 455–473, https://doi.org/10.1358/dot.2021.57.7.3235211.Suche in Google Scholar PubMed

Boice, A. and Bouchier-Hayes, L. (2020). Targeting apoptotic caspases in cancer. Biochim. Biophys. Acta Mol. Cell Res. 1867: 118688, https://doi.org/10.1016/j.bbamcr.2020.118688.Suche in Google Scholar PubMed PubMed Central

Boulares, A.H., Yakovlev, A.G., Ivanova, V., Stoica, B.A., Wang, G., Iyer, S., and Smulson, M. (1999). Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J. Biol. Chem. 274: 22932–22940, https://doi.org/10.1074/jbc.274.33.22932.Suche in Google Scholar PubMed

Brabletz, T., Kalluri, R., Nieto, M.A., and Weinberg, R.A. (2018). EMT in cancer. Nat. Rev. Cancer 18: 128–134, https://doi.org/10.1038/nrc.2017.118.Suche in Google Scholar PubMed

Cano, A., Pérez-Moreno, M.A., Rodrigo, I., Locascio, A., Blanco, M.J., Del Barrio, M.G., Portillo, F., and Nieto, M.A. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2: 76–83, https://doi.org/10.1038/35000025.Suche in Google Scholar PubMed

Cheng, L., Wang, C., and Jing, J. (2016). Cell cycle kinases in osteosarcoma: potential for therapeutic intervention. Curr. Pharmaceut. Des. 22: 4830–4834, https://doi.org/10.2174/1381612822666160512151028.Suche in Google Scholar PubMed

Corre, I., Verrecchia, F., Crenn, V., Redini, F., and Trichet, V. (2020). The osteosarcoma microenvironment: a complex but targetable ecosystem. Cells 9: 976, doi:https://doi.org/10.3390/cells9040976.Suche in Google Scholar PubMed PubMed Central

Daina, A., Michielin, O., and Zoete, V. (2019). SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 47: W357–W364, https://doi.org/10.1093/nar/gkz382.Suche in Google Scholar

Davis, A.P., Grondin, C.J., Johnson, R.J., Sciaky, D., Mcmorran, R., Wiegers, J., Wiegers, T.C., and Mattingly, C.J. (2019). The comparative toxicogenomics database: update 2019. Nucleic Acids Res. 47: D948–D954, https://doi.org/10.1093/nar/gky868.Suche in Google Scholar

Di Santo, N. and Ehrisman, J. (2014). A functional perspective of nitazoxanide as a potential anticancer drug. Mutat. Res. 768: 16–21, https://doi.org/10.1016/j.mrfmmm.2014.05.005.Suche in Google Scholar

Du Rusquec, P., Blonz, C., Frenel, J.S., and Campone, M. (2020). Targeting the PI3K/Akt/mTOR pathway in estrogen-receptor positive HER2 negative advanced breast cancer. Ther Adv Med Oncol 12: 1758835920940939, doi:https://doi.org/10.1177/1758835920940939.Suche in Google Scholar

El-Huneidi, W., Bajbouj, K., Muhammad, J.S., Vinod, A., Shafarin, J., Khoder, G., Saleh, M.A., Taneera, J., and Abu-Gharbieh, E. (2021). Carnosic acid induces apoptosis and inhibits Akt/mTor signaling in human gastric cancer cell lines. Pharmaceuticals (Basel) 14: 230, doi:https://doi.org/10.3390/ph14030230.Suche in Google Scholar

Fan-Minogue, H., Bodapati, S., Solow-Cordero, D., Fan, A., Paulmurugan, R., Massoud, T.F., Felsher, D.W., and Gambhir, S.S. (2013). A c-Myc activation sensor-based high-throughput drug screening identifies an antineoplastic effect of nitazoxanide. Mol. Cancer Therapeut. 12: 1896–1905, https://doi.org/10.1158/1535-7163.mct-12-1243.Suche in Google Scholar

Gaspar, N., Occean, B.V., Pacquement, H., Bompas, E., Bouvier, C., Brisse, H.J., Castex, M.P., Cheurfa, N., Corradini, N., Delaye, J., et al.. (2018). Results of methotrexate-etoposide-ifosfamide based regimen (M-EI) in osteosarcoma patients included in the French OS2006/sarcome-09 study. Eur. J. Cancer 88: 57–66, https://doi.org/10.1016/j.ejca.2017.09.036.Suche in Google Scholar

Hanahan, D. and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100: 57–70, https://doi.org/10.1016/s0092-8674(00)81683-9.Suche in Google Scholar

Harrison, D.J., Geller, D.S., Gill, J.D., Lewis, V.O., and Gorlick, R. (2017). Current and future therapeutic approaches for osteosarcoma. Expert Rev. Anticancer Ther. 18: 39–50, https://doi.org/10.1080/14737140.2018.1413939.Suche in Google Scholar PubMed

He, R., Du, S., Lei, T., Xie, X., and Wang, Y. (2020). Glycogen synthase kinase 3β in tumorigenesis and oncotherapy. Oncol. Rep. 44: 2373–2385, https://doi.org/10.3892/or.2020.7817.Suche in Google Scholar PubMed PubMed Central

Hu, K., Dai, H.B., and Qiu, Z.L. (2016). mTOR signaling in osteosarcoma: oncogenesis and therapeutic aspects. Oncol. Rep. 36: 1219–1225, https://doi.org/10.3892/or.2016.4922.Suche in Google Scholar PubMed

Hu, Z., Lai, Y., Ma, C., Zuo, L., Xiao, G., Gao, H., Xie, B., Huang, X., Gan, H., Huang, D., et al.. (2022). Cordyceps militaris extract induces apoptosis and pyroptosis via caspase-3/PARP/GSDME pathways in A549 cell line. Food Sci. Nutr. 10: 21–38, https://doi.org/10.1002/fsn3.2636.Suche in Google Scholar PubMed PubMed Central

Kale, J., Osterlund, E.J., and Andrews, D.W. (2018). BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 25: 65–80, https://doi.org/10.1038/cdd.2017.186.Suche in Google Scholar PubMed PubMed Central

Kim, K.M., Hussein, U.K., Park, S.H., Kang, M.A., Moon, Y.J., Zhang, Z., Song, Y., Park, H.S., Bae, J.S., Park, B.H., et al.. (2019). FAM83H is involved in stabilization of β-catenin and progression of osteosarcomas. J. Exp. Clin. Cancer Res. 38: 267, https://doi.org/10.1186/s13046-019-1274-0.Suche in Google Scholar PubMed PubMed Central

Kim, S. (2016). Getting the most out of PubChem for virtual screening. Expert Opin. Drug Discov. 11: 843–855, https://doi.org/10.1080/17460441.2016.1216967.Suche in Google Scholar PubMed PubMed Central

Kolligs, F.T., Bommer, G., and Göke, B. (2002). Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis. Digestion 66: 131–144, https://doi.org/10.1159/000066755.Suche in Google Scholar PubMed

Lambert, A.W. and Weinberg, R.A. (2021). Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat. Rev. Cancer 21: 325–338, https://doi.org/10.1038/s41568-021-00332-6.Suche in Google Scholar PubMed

Li, H.B., Chen, J.K., Su, Z.X., Jin, Q.L., Deng, L.W., Huang, G., and Shen, J.N. (2021). Cordycepin augments the chemosensitivity of osteosarcoma to cisplatin by activating AMPK and suppressing the AKT signaling pathway. Cancer Cell Int. 21: 706, https://doi.org/10.1186/s12935-021-02411-y.Suche in Google Scholar PubMed PubMed Central

Lim, S. and Kaldis, P. (2013). Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140: 3079–3093, https://doi.org/10.1242/dev.091744.Suche in Google Scholar PubMed

Ma, H., He, C., Cheng, Y., Yang, Z., Zang, J., Liu, J., and Chen, X. (2015). Localized co-delivery of doxorubicin, cisplatin, and methotrexate by thermosensitive hydrogels for enhanced osteosarcoma treatment. ACS Appl. Mater. Interfaces 7: 27040–27048, https://doi.org/10.1021/acsami.5b09112.Suche in Google Scholar PubMed

Mathews, M.B., Bernstein, R.M., Franza, B.R.Jr., and Garrels, J.I. (1984). Identity of the proliferating cell nuclear antigen and cyclin. Nature 309: 374–376, https://doi.org/10.1038/309374a0.Suche in Google Scholar PubMed

Matsumoto, A., Pasut, A., Matsumoto, M., Yamashita, R., Fung, J., Monteleone, E., Saghatelian, A., Nakayama, K.I., Clohessy, J.G., and Pandolfi, P.P. (2017). mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature 541: 228–232, https://doi.org/10.1038/nature21034.Suche in Google Scholar PubMed

Meazza, C., Bastoni, S., and Scanagatta, P. (2020). What is the best clinical approach to recurrent/refractory osteosarcoma? Expert Rev. Anticancer Ther. 20: 415–428, https://doi.org/10.1080/14737140.2020.1760848.Suche in Google Scholar PubMed

Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., and Hynes, R.O. (2016). The extracellular matrix: tools and insights for the “omics” era. Matrix Biol. 49: 10–24, https://doi.org/10.1016/j.matbio.2015.06.003.Suche in Google Scholar PubMed PubMed Central

Nowak, E. and Bednarek, I. (2021). Aspects of the epigenetic regulation of EMT related to cancer metastasis. Cells 10: 3435, doi:https://doi.org/10.3390/cells10123435.Suche in Google Scholar PubMed PubMed Central

Ocana, A., Vera-Badillo, F., Al-Mubarak, M., Templeton, A.J., Corrales-Sanchez, V., Diez-Gonzalez, L., Cuenca-Lopez, M.D., Seruga, B., Pandiella, A., and Amir, E. (2014). Activation of the PI3K/mTOR/AKT pathway and survival in solid tumors: systematic review and meta-analysis. PLoS One 9: e95219, https://doi.org/10.1371/journal.pone.0095219.Suche in Google Scholar PubMed PubMed Central

Pandurangan, A.K. (2013). Potential targets for prevention of colorectal cancer: a focus on PI3K/Akt/mTOR and Wnt pathways. Asian Pac. J. Cancer Prev. APJCP 14: 2201–2205, https://doi.org/10.7314/apjcp.2013.14.4.2201.Suche in Google Scholar PubMed

Pezeshkian, Z., Nobili, S., Peyravian, N., Shojaee, B., Nazari, H., Soleimani, H., Asadzadeh-Aghdaei, H., Ashrafian Bonab, M., Nazemalhosseini-Mojarad, E., and Mini, E. (2021). Insights into the role of matrix metalloproteinases in precancerous conditions and in colorectal cancer. Cancers 13: 6226, doi:https://doi.org/10.3390/cancers13246226.10.3390/cancers13246226Suche in Google Scholar PubMed PubMed Central

Pollak, N., Lindner, A., Imig, D., Kuritz, K., Fritze, J.S., Decker, L., Heinrich, I., Stadager, J., Eisler, S., Stöhr, D., et al.. (2021). Cell cycle progression and transmitotic apoptosis resistance promote escape from extrinsic apoptosis. J. Cell Sci. 134: jcs258966, doi:https://doi.org/10.1242/jcs.258966.Suche in Google Scholar PubMed

Rossignol, J.-F. (2014). Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antivir. Res. 110: 94–103, https://doi.org/10.1016/j.antiviral.2014.07.014.Suche in Google Scholar PubMed PubMed Central

Senkowski, W., Zhang, X., Olofsson, M.H., Isacson, R., Höglund, U., Gustafsson, M., Nygren, P., Linder, S., Larsson, R., and Fryknäs, M. (2015). Three-dimensional cell culture-based screening identifies the anthelmintic drug nitazoxanide as a candidate for treatment of colorectal cancer. Mol. Cancer Therapeut. 14: 1504–1516, https://doi.org/10.1158/1535-7163.mct-14-0792.Suche in Google Scholar

Shahcheraghi, S.H., Tchokonte-Nana, V., Lotfi, M., Lotfi, M., Ghorbani, A., and Sadeghnia, H.R. (2020). Wnt/β-catenin and PI3K/Akt/mTOR signaling pathways in glioblastoma: two main targets for drug design: a review. Curr. Pharmaceut. Des. 26: 1729–1741, doi:https://doi.org/10.2174/1381612826666200131100630.Suche in Google Scholar PubMed

Smrke, A., Anderson, P.M., Gulia, A., Gennatas, S., Huang, P.H., and Jones, R.L. (2021). Future directions in the treatment of osteosarcoma. Cells 10: 172, doi:https://doi.org/10.3390/cells10010172.Suche in Google Scholar PubMed PubMed Central

Song, Z., Wang, J., Su, Q., Luan, M., Chen, X., and Xu, X. (2021). The role of MMP-2 and MMP-9 in the metastasis and development of hypopharyngeal carcinoma. Braz. J. Otorhinolaryngol. 87: 521–528, https://doi.org/10.1016/j.bjorl.2019.10.009.Suche in Google Scholar PubMed PubMed Central

Stelzer, G., Dalah, I., Stein, T.I., Satanower, Y., Rosen, N., Nativ, N., Oz-Levi, D., Olender, T., Belinky, F., Bahir, I., et al.. (2011). In-silico human genomics with GeneCards. Hum. Genom. 5: 709–717, https://doi.org/10.1186/1479-7364-5-6-709.Suche in Google Scholar PubMed PubMed Central

Sun, H., Ou, T., Hu, J., Yang, Z., Lei, Q., Li, Y., Wang, G., Li, Y., Wu, K., Wang, S., et al.. (2021a). Nitazoxanide impairs mitophagy flux through ROS-mediated mitophagy initiation and lysosomal dysfunction in bladder cancer. Biochem. Pharmacol. 190: 114588, https://doi.org/10.1016/j.bcp.2021.114588.Suche in Google Scholar PubMed

Sun, Y., Liu, Y., Ma, X., and Hu, H. (2021b). The influence of cell cycle regulation on chemotherapy. Int. J. Mol. Sci. 22, https://doi.org/10.3390/ijms22136923.Suche in Google Scholar PubMed PubMed Central

Suski, J.M., Braun, M., Strmiska, V., and Sicinski, P. (2021). Targeting cell-cycle machinery in cancer. Cancer Cell 39: 759–778, https://doi.org/10.1016/j.ccell.2021.03.010.Suche in Google Scholar PubMed PubMed Central

Szklarczyk, D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N.T., Roth, A., Bork, P., et al.. (2017). The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45: D362–D368, https://doi.org/10.1093/nar/gkw937.Suche in Google Scholar PubMed PubMed Central

UniProt, C. (2021). UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49: D480–D489, doi:https://doi.org/10.1093/nar/gkaa1100.Suche in Google Scholar PubMed PubMed Central

Wang, X., Shen, C., Liu, Z., Peng, F., Chen, X., Yang, G., Zhang, D., Yin, Z., Ma, J., Zheng, Z., et al.. (2018). Nitazoxanide, an antiprotozoal drug, inhibits late-stage autophagy and promotes ING1-induced cell cycle arrest in glioblastoma. Cell Death Dis. 9: 1032, https://doi.org/10.1038/s41419-018-1058-z.Suche in Google Scholar PubMed PubMed Central

Wang, X., Shen, Y., Wang, S., Li, S., Zhang, W., Liu, X., Lai, L., Pei, J., and Li, H. (2017). PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 45: W356–W360, https://doi.org/10.1093/nar/gkx374.Suche in Google Scholar PubMed PubMed Central

Wu, D. and Pan, W. (2010). GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem. Sci. 35: 161–168, https://doi.org/10.1016/j.tibs.2009.10.002.Suche in Google Scholar PubMed PubMed Central

Yang, S., Liu, Y., Li, M.Y., Ng, C.S.H., Yang, S.L., Wang, S., Zou, C., Dong, Y., Du, J., Long, X., et al.. (2017). FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer. Mol. Cancer 16: 124, https://doi.org/10.1186/s12943-017-0700-1.Suche in Google Scholar PubMed PubMed Central

Yue, C.H., Chen, C.H., Lee, W.T., Su, T.F., Pan, Y.R., Chen, Y.P., Huang, F.M., and Lee, C.J. (2020). Cetyltrimethylammonium bromide disrupts the mesenchymal characteristics of HA22T/VGH cells via inactivation of c-Met/PI3K/Akt/mTOR pathway. Anticancer Res. 40: 4513–4522, https://doi.org/10.21873/anticanres.14456.Suche in Google Scholar PubMed

Zhang, K., Wu, S., Wu, H., Liu, L., and Zhou, J. (2021). Effect of the Notch1-mediated PI3K-Akt-mTOR pathway in human osteosarcoma. Aging (Albany NY) 13: 21090–21101, https://doi.org/10.18632/aging.203261.Suche in Google Scholar PubMed PubMed Central

Received: 2022-03-25
Accepted: 2022-06-30
Published Online: 2022-08-10
Published in Print: 2022-09-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2022-0148/pdf
Button zum nach oben scrollen