Startseite Exceptionally versatile take II: post-translational modifications of lysine and their impact on bacterial physiology
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Exceptionally versatile take II: post-translational modifications of lysine and their impact on bacterial physiology

  • Jürgen Lassak

    Jürgen Lassak studied Biology at the Eberhard Karls Universität Tübingen with a focus in microbiology (1999–2005). He did his PhD in Marburg at the Max Planck Institute for Terrestrial Microbiology on prokaryotic signal transduction mechanisms (2007–2010). Since then, he is affiliated with the Chair of Microbiology at the Ludwig-Maximilians-Universität München, where Jürgen also started his own independent research group in 2015. His fascination has always been with bacteria and the molecular mechanisms by which microorganisms convert external or internal stimuli into an adequate biochemical response. In this regard he is especially interested in translational stress and posttranslational modifications.

    ORCID logo EMAIL logo
    , Alina Sieber

    Alina Sieber studied Biology at the Ludwig-Maximilians-Universität München, Germany and graduated in 2021 (MSc). In the same year she started her PhD in the “Microbial Biochemistry” group under the supervision of PD Jürgen Lassak at LMU Munich, focusing on translational stress response in bacteria.

    ORCID logo
    und Michael Hellwig

    Michael Hellwig studied Food Chemistry between 1999 and 2004 at Technische Universität Dresden (Germany), where he also obtained his PhD in 2011. In his post-doc time, he worked on the microbial metabolization of glycated amino acids and intensified his studies on the chemistry of protein oxidation. Since 2020, he has been a professor of Food Chemistry at Technische Universität Braunschweig (Germany). Michael’s research interests include mechanisms and analysis of protein oxidation and glycation in food and physiological systems as well as the impact of the respective reaction products on microorganisms and human physiology.

    ORCID logo EMAIL logo
Veröffentlicht/Copyright: 17. Februar 2022

Abstract

Among the 22 proteinogenic amino acids, lysine sticks out due to its unparalleled chemical diversity of post-translational modifications. This results in a wide range of possibilities to influence protein function and hence modulate cellular physiology. Concomitantly, lysine derivatives form a metabolic reservoir that can confer selective advantages to those organisms that can utilize it. In this review, we provide examples of selected lysine modifications and describe their role in bacterial physiology.


Corresponding author: Jürgen Lassak, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany, E-mail: ; and Michael Hellwig, Technische Universität Braunschweig – Institute of Food Chemistry, Schleinitzstraße 20, D-38106 Braunschweig, Germany, E-mail:

Award Identifier / Grant number: LA 3658/5-1

About the authors

Jürgen Lassak

Jürgen Lassak studied Biology at the Eberhard Karls Universität Tübingen with a focus in microbiology (1999–2005). He did his PhD in Marburg at the Max Planck Institute for Terrestrial Microbiology on prokaryotic signal transduction mechanisms (2007–2010). Since then, he is affiliated with the Chair of Microbiology at the Ludwig-Maximilians-Universität München, where Jürgen also started his own independent research group in 2015. His fascination has always been with bacteria and the molecular mechanisms by which microorganisms convert external or internal stimuli into an adequate biochemical response. In this regard he is especially interested in translational stress and posttranslational modifications.

Alina Sieber

Alina Sieber studied Biology at the Ludwig-Maximilians-Universität München, Germany and graduated in 2021 (MSc). In the same year she started her PhD in the “Microbial Biochemistry” group under the supervision of PD Jürgen Lassak at LMU Munich, focusing on translational stress response in bacteria.

Michael Hellwig

Michael Hellwig studied Food Chemistry between 1999 and 2004 at Technische Universität Dresden (Germany), where he also obtained his PhD in 2011. In his post-doc time, he worked on the microbial metabolization of glycated amino acids and intensified his studies on the chemistry of protein oxidation. Since 2020, he has been a professor of Food Chemistry at Technische Universität Braunschweig (Germany). Michael’s research interests include mechanisms and analysis of protein oxidation and glycation in food and physiological systems as well as the impact of the respective reaction products on microorganisms and human physiology.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Deutsche Forschungsgemeinschaft, Funder id: http://dx.doi.org/10.13039/501100001659, Grant Number: LA 3658/5-1.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abeykoon, A.H., Chao, C.C., Wang, G.H., Gucek, M., Yang, D.C.H., and Ching, W.M. (2012). Two protein lysine methyltransferases methylate outer membrane protein B from Rickettsia. J. Bacteriol. 194: 6410–6418, https://doi.org/10.1128/jb.01379-12.Suche in Google Scholar

Abeykoon, A., Wang, G., Chao, C.C., Chock, P.B., Gucek, M., Ching, W.M., and Yang, D.C. (2014). Multimethylation of Rickettsia OmpB catalyzed by lysine methyltransferases. J. Biol. Chem. 289: 7691–7701, https://doi.org/10.1074/jbc.m113.535567.Suche in Google Scholar

AbouElfetouh, A., Kuhn, M.L., Hu, L.I., Scholle, M.D., Sorensen, D.J., Sahu, A.K., Becher, D., Antelmann, H., Mrksich, M., Anderson, W.F., et al.. (2015). The E. coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites. MicrobiologyOpen 4: 66–83, https://doi.org/10.1002/mbo3.223.Suche in Google Scholar

Adeva-Andany, M.M., Calvo-Castro, I., Fernandez-Fernandez, C., Donapetry-Garcia, C., and Pedre-Pineiro, A.M. (2017). Significance of l-carnitine for human health. IUBMB Life 69: 578–594, https://doi.org/10.1002/iub.1646.Suche in Google Scholar

Ahmed, M.U., Thorpe, S.R., and Baynes, J.W. (1986). Identification of Nε-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J. Biol. Chem. 261: 4889–4894, https://doi.org/10.1016/s0021-9258(19)89188-3.Suche in Google Scholar

Akagawa, M., Sasaki, D., Kurota, Y., and Suyama, K. (2005). Formation of α-aminoadipic and γ-glutamic semialdehydes in proteins by the Maillard reaction. Ann. NY Acad. Sci. 1043: 129–134, https://doi.org/10.1196/annals.1333.016.Suche in Google Scholar PubMed

Ali, M.M., Newsom, D.L., Gonzalez, J.F., Sabag-Daigle, A., Stahl, C., Steidley, B., Dubena, J., Dyszel, J.L., Smith, J.N., and Dieye, Y., et al.. (2014). Fructose-asparagine is a primary nutrient during growth of Salmonella in the inflamed intestine. PLoS Pathog. 10: e1004209, https://doi.org/10.1371/journal.ppat.1004209.Suche in Google Scholar PubMed PubMed Central

Allaoui, A., Mounier, J., Prevost, M.C., Sansonetti, P.J., and Parsot, C. (1992). icsB: a Shigella flexneri virulence gene necessary for the lysis of protrusions during intercellular spread. Mol. Microbiol. 6: 1605–1616, https://doi.org/10.1111/j.1365-2958.1992.tb00885.x.Suche in Google Scholar PubMed

Allevi, P., Anastasia, M., Paroni, R., and Ragusa, A. (2004). The first synthesis of glucosylgalactosyl hydroxylysine (Glu-Gal-Hyl), an important biological indicator of collagen turnover. Bioorg. Med. Chem. Lett 14: 3319–3321, https://doi.org/10.1016/j.bmcl.2004.03.068.Suche in Google Scholar PubMed

Althaus, F.R. and Richter, C. (1987). ADP-ribosylation of proteins. Enzymology and biological significance. Mol. Biol. Biochem. Biophys. 37: 1–237.10.1007/978-3-642-83077-8Suche in Google Scholar

Altmeyer, M., Messner, S., Hassa, P.O., Fey, M., and Hottiger, M.O. (2009). Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites. Nucleic Acids Res. 37: 3723–3738, https://doi.org/10.1093/nar/gkp229.Suche in Google Scholar PubMed PubMed Central

Ambler, R.P. and Rees, M.W. (1959). Nε-methyl-lysine in bacterial flagellar protein. Nature 184: 56–57, https://doi.org/10.1038/184056b0.Suche in Google Scholar PubMed

Ambrogelly, A., O’Donoghue, P., Söll, D., and Moses, S. (2010). A bacterial ortholog of class II lysyl-tRNA synthetase activates lysine. FEBS Lett. 584: 3055–3060, https://doi.org/10.1016/j.febslet.2010.05.036.Suche in Google Scholar PubMed PubMed Central

Andrews, S.C. (2010). The ferritin-like superfamily: evolution of the biological iron storeman from a rubrerythrin-like ancestor. Biochim. Biophys. Acta 1800: 691–705, https://doi.org/10.1016/j.bbagen.2010.05.010.Suche in Google Scholar PubMed

Atanasova, A., Handzhiyski, Y., Sredovska-Bozhinov, A., Popova, E., Odjakova, M., Datsenko, K.A., Wanner, B.L., Ivanov, I., and Mironova, R. (2012). Substrate specificity of the Escherichia coli FrlB amadoriase. Biotechnol. Biotechnol. Equip. 26: 140–145, https://doi.org/10.5504/50yrtimb.2011.0026.Suche in Google Scholar

Avalos, J.L., Bever, K.M., and Wolberger, C. (2005). Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol. Cell. 17: 855–868, https://doi.org/10.1016/j.molcel.2005.02.022.Suche in Google Scholar PubMed

Azevedo, C., Livermore, T., and Saiardi, A. (2015). Protein polyphosphorylation of lysine residues by inorganic polyphosphate. Mol. Cell. 58: 71–82, https://doi.org/10.1016/j.molcel.2015.02.010.Suche in Google Scholar PubMed

Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K.A., Tomita, M., Wanner, B.L., and Mori, H. (2006). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2: 2006–2008, https://doi.org/10.1038/msb4100050.Suche in Google Scholar PubMed PubMed Central

Baek, C.H., Farrand, S.K., Lee, K.E., Park, D.K., Lee, J.K., and Kim, K.S. (2003). Convergent evolution of Amadori opine catabolic systems in plasmids of Agrobacterium tumefaciens. J. Bacteriol. 185: 513–524, https://doi.org/10.1128/jb.185.2.513-524.2003.Suche in Google Scholar

Bailly, M. and de Crecy-Lagard, V. (2010). Predicting the pathway involved in post-translational modification of elongation factor P in a subset of bacterial species. Biol. Direct 5: 3, https://doi.org/10.1186/1745-6150-5-3.Suche in Google Scholar PubMed PubMed Central

Baldensperger, T., and Glomb, M.A. (2021). Pathways of non-enzymatic lysine acylation. Front. Cell Dev. Biol. 9: 664553, https://doi.org/10.3389/fcell.2021.664553.Suche in Google Scholar

Baldensperger, T., Jost, T., Zipprich, A., and Glomb, M.A. (2018). Novel α-oxoamide advanced-glycation endproducts within the Nε-carboxymethyl lysine and Nε-carboxyethyl lysine reaction cascades. J. Agric. Food Chem. 66: 1898–1906, https://doi.org/10.1021/acs.jafc.7b05813.Suche in Google Scholar

Baldensperger, T., Sanzo, S.D., Ori, A., and Glomb, M.A. (2019). Quantitation of reactive acyl-CoA species mediated protein acylation by HPLC-MS/MS. Anal. Chem. 91: 12336–12343, https://doi.org/10.1021/acs.analchem.9b02656.Suche in Google Scholar

Bao, X.C., Wang, Y., Li, X., Li, X.M., Liu, Z., Yang, T.P., Wong, C.F., Zhang, J.W., Hao, Q., and Li, X.D. (2014). Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach. eLife 3: e02999, https://doi.org/10.7554/eLife.02999.Suche in Google Scholar

Barak, R., Welch, M., Yanovsky, A., Oosawa, K., and Eisenbach, M. (1992). Acetyladenylate or its derivative acetylates the chemotaxis protein CheY in vitro and increases its activity at the flagellar switch. Biochemistry 31: 10099–10107, https://doi.org/10.1021/bi00156a033.Suche in Google Scholar

Barbier, M., Owings, J.P., Martinez-Ramos, I., Damron, F.H., Gomila, R., Blazquez, J., Goldberg, J.B., and Alberti, S. (2013). Lysine trimethylation of EF-Tu mimics platelet-activating factor to initiate Pseudomonas aeruginosa pneumonia. Mbio 4: e00207-13, https://doi.org/10.1128/mBio.00207-13.Suche in Google Scholar

Barroso-Batista, J., Pedro, M.F., Sales-Dias, J., Pinto, C.J.G., Thompson, J.A., Pereira, H., Demengeot, J., Gordo, I., and Xavier, K.B. (2020). Specific eco-evolutionary contexts in the mouse gut reveal Escherichia coli metabolic versatility. Curr. Biol. 30: 1049–1062.e1047, https://doi.org/10.1016/j.cub.2020.01.050.Suche in Google Scholar

Bartig, D., Schumann, H., and Klink, F. (1990). The unique post-translational modification leading to deoxyhypusine or hypusine is a general feature of the archaebacterial kingdom. Syst. Appl. Microbiol. 13: 112–116, https://doi.org/10.1016/s0723-2020(11)80156-6.Suche in Google Scholar

Basak, T., Vega-Montoto, L., Zimmerman, L.J., Tabb, D.L., Hudson, B.G., and Vanacore, R.M. (2016). Comprehensive characterization of glycosylation and hydroxylation of basement membrane collagen IV by high-resolution mass spectrometry. J. Proteome Res. 15: 245–258, https://doi.org/10.1021/acs.jproteome.5b00767.Suche in Google Scholar PubMed PubMed Central

Behrends, C. and Harper, J.W. (2011). Constructing and decoding unconventional ubiquitin chains. Nat. Struct. Mol. Biol. 18: 520–528, https://doi.org/10.1038/nsmb.2066.Suche in Google Scholar PubMed

Behshad, E., Ruzicka, F.J., Mansoorabadi, S.O., Chen, D., Reed, G.H., and Frey, P.A. (2006). Enantiomeric free radicals and enzymatic control of stereochemistry in a radical mechanism: the case of lysine 2,3-aminomutases. Biochemistry 45: 12639–12646, https://doi.org/10.1021/bi061328t.Suche in Google Scholar PubMed PubMed Central

Bender, M.L. (1960). Mechanisms of catalysis of nucleophilic reactions of carboxylic acid derivatives. Chem. Rev. 60: 53–113, https://doi.org/10.1021/cr60203a005.Suche in Google Scholar

Bennett, B.D., Kimball, E.H., Gao, M., Osterhout, R., Van Dien, S.J., and Rabinowitz, J.D. (2009). Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5: 593–599, https://doi.org/10.1038/nchembio.186.Suche in Google Scholar PubMed PubMed Central

Benz, R. (2020). RTX-Toxins. Toxins 12: 359, https://doi.org/10.3390/toxins12060359.Suche in Google Scholar PubMed PubMed Central

Bittner, S. (2006). When quinones meet amino acids: chemical, physical and biological consequences. Amino Acids 30: 205–224, https://doi.org/10.1007/s00726-005-0298-2.Suche in Google Scholar PubMed

Black, J.C., Van Rechem, C., and Whetstine, J.R. (2012). Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol. Cell. 48: 491–507, https://doi.org/10.1016/j.molcel.2012.11.006.Suche in Google Scholar PubMed PubMed Central

Blaha, G., Stanley, R.E., and Steitz, T.A. (2009). Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science 325: 966–970, https://doi.org/10.1126/science.1175800.Suche in Google Scholar PubMed PubMed Central

Blander, G. and Guarente, L. (2004). The Sir2 family of protein deacetylases. Annu. Rev. Biochem. 73: 417–435, https://doi.org/10.1146/annurev.biochem.73.011303.073651.Suche in Google Scholar PubMed

Boubakri, H., Seghezzi, N., Duchateau, M., Gominet, M., Kofroňová, O., Benada, O., Mazodier, P., and Pernodet, J.L. (2015). The absence of pupylation (prokaryotic ubiquitin-Like protein modification) affects morphological and physiological differentiation in Streptomyces coelicolor. J. Bacteriol. 197: 3388–3399, https://doi.org/10.1128/jb.00591-15.Suche in Google Scholar

Brown, T.D.K., Jonesmortimer, M.C., and Kornberg, H.L. (1977). The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. J. Gen. Microbiol. 102: 327–336, https://doi.org/10.1099/00221287-102-2-327.Suche in Google Scholar PubMed

Brown, C.W., Sridhara, V., Boutz, D.R., Person, M.D., Marcotte, E.M., Barrick, J.E., and Wilke, C.O. (2017). Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions. BMC Genom. 18, https://doi.org/10.1186/s12864-017-3676-8.Suche in Google Scholar

Bui, T.P., Ritari, J., Boeren, S., de Waard, P., Plugge, C.M., and de Vos, W.M. (2015). Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal. Nat. Commun. 6: 10062, https://doi.org/10.1038/ncomms10062.Suche in Google Scholar

Bui, T.P.N., Troise, A.D., Fogliano, V., and de Vos, W.M. (2019). Anaerobic degradation of Nε-carboxymethyllysine, a major glycation end-product, by human intestinal bacteria. J. Agric. Food Chem. 67: 6594–6602, https://doi.org/10.1021/acs.jafc.9b02208.Suche in Google Scholar

Bui, T.P.N., Troise, A.D., Nijsse, B., Roviello, G.N., Fogliano, V., and de Vos, W.M. (2020). Intestinimonas-like bacteria are important butyrate producers that utilize Nε-fructosyllysine and lysine in formula-fed infants and adults. J. Funct.Foods 70: 103974, https://doi.org/10.1016/j.jff.2020.103974.Suche in Google Scholar

Burns, K.E., Liu, W.T., Boshoff, H.I.M., Dorrestein, P.C., and Barry, C.E. (2009). Proteasomal protein degradation in mycobacteria is dependent upon a prokaryotic ubiquitin-like protein. J. Biol. Chem. 284: 3069–3075, https://doi.org/10.1074/jbc.m808032200.Suche in Google Scholar

Burns, K.E., Cerda-Maira, F.A., Wang, T., Li, H.L., Bishai, W.R., and Darwin, K.H. (2010). “Depupylation” of prokaryotic ubiquitin-like protein from mycobacterial proteasome substrates. Mol. Cell. 39: 821–827, https://doi.org/10.1016/j.molcel.2010.07.019.Suche in Google Scholar

Calvert, A.F. and Rodwell, V.W. (1966). Metabolism of pipecolic acid in a Pseudomonas species. 3. L-α-aminoadipate δ-semialdehyde:nicotinamide adenine dinucleotide oxidoreductase. J. Biol. Chem. 241: 409–414, https://doi.org/10.1016/s0021-9258(18)96932-2.Suche in Google Scholar

Capuano, E., Fedele, F., Mennella, C., Visciano, M., Napolitano, A., Lanzuise, S., Ruocco, M., Lorito, M., del Castillo, M.D., and Fogliano, V. (2007). Studies on the effect of amadoriase from Aspergillus fumigatus on peptide and protein glycation in vitro. J. Agric. Food Chem. 55: 4189–4195, https://doi.org/10.1021/jf0700024.Suche in Google Scholar PubMed

Chen, Y., Sprung, R., Tang, Y., Ball, H., Sangras, B., Kim, S.C., Falck, J.R., Peng, J.M., Gu, W., and Zhao, Y.M. (2007). Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell. Proteomics 6: 812–819, https://doi.org/10.1074/mcp.m700021-mcp200.Suche in Google Scholar

Chen, X., Solomon, W.C., Kang, Y., Cerda-Maira, F., Darwin, K.H., and Walters, K.J. (2009). Prokaryotic ubiquitin-like protein pup is intrinsically disordered. J. Mol. Biol. 392: 208–217, https://doi.org/10.1016/j.jmb.2009.07.018.Suche in Google Scholar PubMed PubMed Central

Chen, D., Vollmar, M., Rossi, M.N., Phillips, C., Kraehenbuehl, R., Slade, D., Mehrotra, P.V., von Delft, F., Crosthwaite, S.K., Gileadi, O., et al.. (2011). Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases. J. Biol. Chem. 286: 13261–13271, https://doi.org/10.1074/jbc.m110.206771.Suche in Google Scholar

Christensen, D.G., Meyer, J.G., Baumgartner, J.T., D’Souza, A.K., Nelson, W.C., Payne, S.H., Kuhn, M.L., Schilling, B., and Wolfe, A.J. (2018). Identification of novel protein lysine acetyltransferases in Escherichia coli. mBio 9: e01905-18, https://doi.org/10.1128/mBio.01905-18.Suche in Google Scholar

Christensen, D.G., Baumgartner, J.T., Xie, X., Jew, K.M., Basisty, N., Schilling, B., Kuhn, M.L., and Wolfe, A.J. (2019). Mechanisms, detection, and relevance of protein acetylation in prokaryotes. mBio 10: e02708-18, https://doi.org/10.1128/mBio.02708-18.Suche in Google Scholar

Clarke, S.G. (2013). Protein methylation at the surface and buried deep: thinking outside the histone box. Trends Biochem. Sci. 38: 243–252, https://doi.org/10.1016/j.tibs.2013.02.004.Suche in Google Scholar

Colak, G., Xie, Z., Zhu, A.Y., Dai, L., Lu, Z., Zhang, Y., Wan, X., Chen, Y., Cha, Y.H., Lin, H., et al.. (2013). Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli. Mol. Cell. Proteomics 12: 3509–3520, https://doi.org/10.1074/mcp.m113.031567.Suche in Google Scholar

Collard, F., Delpierre, G., Stroobant, V., Matthijs, G., and Van Schaftingen, E. (2003). A mammalian protein homologous to fructosamine-3-kinase is a ketosamine-3-kinase acting on psicosamines and ribulosamines but not on fructosamines. Diabetes 52: 2888–2895, https://doi.org/10.2337/diabetes.52.12.2888.Suche in Google Scholar

Colson, C. (1977). Genetics of ribosomal protein methylation in Escherichia coli. I. A mutant deficient in methylation of protein L11. Mol. Gen. Genet. 154: 167–173, https://doi.org/10.1007/bf00330832.Suche in Google Scholar

Compton, C.L., Fernandopulle, M.S., Nagari, R.T., and Sello, J.K. (2015). Genetic and proteomic analyses of pupylation in Streptomyces coelicolor. J. Bacteriol. 197: 2747–2753, https://doi.org/10.1128/jb.00302-15.Suche in Google Scholar

Coote, J.G. (1992). Structural and functional relationships among the RTX toxin determinants of gram-negative bacteria. FEMS Microbiol. Rev. 8: 137–161, https://doi.org/10.1111/j.1574-6968.1992.tb04961.x.Suche in Google Scholar

Corthay, A., Backlund, J., Broddefalk, J., Michaelsson, E., Goldschmidt, T.J., Kihlberg, J., and Holmdahl, R. (1998). Epitope glycosylation plays a critical role for T cell recognition of type II collagen in collagen-induced arthritis. Eur. J. Immunol. 28: 2580–2590, https://doi.org/10.1002/(sici)1521-4141(199808)28:08<2580::aid-immu2580>3.0.co;2-x.10.1002/(SICI)1521-4141(199808)28:08<2580::AID-IMMU2580>3.0.CO;2-XSuche in Google Scholar

Corzo-Martínez, M., Hernandez-Hernandez, O., Villamiel, M., Rastall, R.A., and Moreno, F.J. (2013). In vitro bifidogenic effect of Maillard-type milk protein–galactose conjugates on the human intestinal microbiota. Int. Dairy J. 31: 127–131.10.1016/j.idairyj.2013.01.004Suche in Google Scholar

Coughlin, C.R.2nd, Tseng, L.A., Abdenur, J.E., Ashmore, C., Boemer, F., Bok, L.A., Boyer, M., Buhas, D., Clayton, P.T., Das, A., et al.. (2021). Consensus guidelines for the diagnosis and management of pyridoxine-dependent epilepsy due to α-aminoadipic semialdehyde dehydrogenase deficiency. J. Inherit. Metab. Dis. 44: 178–192, https://doi.org/10.1002/jimd.12332.Suche in Google Scholar PubMed

Crosby, H.A., Heiniger, E.K., Harwood, C.S., and Escalante-Semerena, J.C. (2010). Reversible Nε-lysine acetylation regulates the activity of acyl-CoA synthetases involved in anaerobic benzoate catabolism in Rhodopseudomonas palustris. Mol. Microbiol. 76: 874–888, https://doi.org/10.1111/j.1365-2958.2010.07127.x.Suche in Google Scholar PubMed PubMed Central

Dai, L., Peng, C., Montellier, E., Lu, Z., Chen, Y., Ishii, H., Debernardi, A., Buchou, T., Rousseaux, S., Jin, F., et al.. (2014). Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nat. Chem. Biol. 10: 365–370, https://doi.org/10.1038/nchembio.1497.Suche in Google Scholar PubMed

Dallo, S.F., Kannan, T.R., Blaylock, M.W., and Baseman, J.B. (2002). Elongation factor Tu and E1 beta subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae. Mol. Microbiol. 46: 1041–1051, https://doi.org/10.1046/j.1365-2958.2002.03207.x.Suche in Google Scholar PubMed

Dallo, S.F., Zhang, B., Denno, J., Hong, S., Tsai, A., Haskins, W., Ye, J.Y., and Weitao, T. (2012). Association of Acinetobacter baumannii EF-Tu with cell surface, outer membrane vesicles, and fibronectin. Sci. World J. 2012: 128705, https://doi.org/10.1100/2012/128705.Suche in Google Scholar PubMed PubMed Central

Darwin, K.H., Ehrt, S., Gutierrez-Ramos, J.C., Weich, N., and Nathan, C.F. (2003). The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302: 1963–1966, https://doi.org/10.1126/science.1091176.Suche in Google Scholar PubMed

Davidson, A.L. and Chen, J. (2004). ATP-binding cassette transporters in bacteria. Annu. Rev. Biochem. 73: 241–268, https://doi.org/10.1146/annurev.biochem.73.011303.073626.Suche in Google Scholar PubMed

Davie, J.R. (2003). Inhibition of histone deacetylase activity by butyrate. J. Nutr. 133: 2485S–2493S, https://doi.org/10.1093/jn/133.7.2485S. 12840228.Suche in Google Scholar PubMed

Davis, R., Ecija-Conesa, A., Gallego-Jara, J., de Diego, T., Filippova, E.V., Kuffel, G., Anderson, W.F., Gibson, B.W., Schilling, B., Canovas, M., et al.. (2018). An acetylatable lysine controls CRP function in E-coli. Mol. Microbiol. 107: 116–131, https://doi.org/10.1111/mmi.13874.Suche in Google Scholar PubMed

de Diego Puente, T., Gallego-Jara, J., Castano-Cerezo, S., Bernal Sanchez, V., Fernandez Espin, V., Garcia de la Torre, J., Manjon Rubio, A., and Canovas Diaz, M. (2015). The protein acetyltransferase PatZ from Escherichia coli is regulated by autoacetylation-induced oligomerization. J. Biol. Chem. 290: 23077–23093, https://doi.org/10.1074/jbc.m115.649806.Suche in Google Scholar

Delpierre, G., Vanstapel, F., Stroobant, V., and Van Schaftingen, E. (2000). Conversion of a synthetic fructosamine into its 3-phospho derivative in human erythrocytes. Biochem. J. 352: 835–839, https://doi.org/10.1042/bj3520835.Suche in Google Scholar

Demirci, H., Gregory, S.T., Dahlberg, A.E., and Jogl, G. (2007). Recognition of ribosomal protein L11 by the protein trimethyltransferase PrmA. EMBO J. 26: 567–577, https://doi.org/10.1038/sj.emboj.7601508.Suche in Google Scholar

Demirci, H., Gregory, S.T., Dahlberg, A.E., and Jogl, G. (2008). Multiple-site trimethylation of ribosomal protein L11 by the PrmA methyltransferase. Structure 16: 1059–1066, https://doi.org/10.1016/j.str.2008.03.016.Suche in Google Scholar

Denu, J.M. (2003). Linking chromatin function with metabolic networks: Sir2 family of NAD(+)-dependent deacetylases. Trends Biochem. Sci. 28: 41–48, https://doi.org/10.1016/s0968-0004(02)00005-1.Suche in Google Scholar

Deppe, V.M., Klatte, S., Bongaerts, J., Maurer, K.H., O’Connell, T., and Meinhardt, F. (2011). Genetic control of amadori product degradation in Bacillus subtilis via regulation of frlBONMD expression by FrlR. Appl. Environ. Microbiol. 77: 2839–2846, https://doi.org/10.1128/aem.02515-10.Suche in Google Scholar

Deutscher, J., Ake, F.M., Derkaoui, M., Zebre, A.C., Cao, T.N., Bouraoui, H., Kentache, T., Mokhtari, A., Milohanic, E., and Joyet, P. (2014). The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol. Mol. Biol. Rev. 78: 231–256, https://doi.org/10.1128/mmbr.00001-14.Suche in Google Scholar

Dever, T.E., Gutierrez, E., and Shin, B.S. (2014). The hypusine-containing translation factor eIF-5A. Crit. Rev. Biochem. Mol. Biol. 49: 413–425, https://doi.org/10.3109/10409238.2014.939608.Suche in Google Scholar PubMed PubMed Central

Díaz-Velasco, S., González, A., Peña, F.J., and Estévez, M. (2020). Noxious effects of selected food-occurring oxidized amino acids on differentiated CACO-2 intestinal human cells. Food Chem. Toxicol. 144: 111650.10.1016/j.fct.2020.111650Suche in Google Scholar PubMed

Dimitrova, R., Mironova, R., and Ivanov, I. (2004). Glycation of proteins in Escherichia coli: effect of nutrient broth ingredients on glycation. Biotechnol. Biotechnol. Equip. 18: 99–103, https://doi.org/10.1080/13102818.2004.10817094.Suche in Google Scholar

Dognin, M.J. and Wittmann-Liebold, B. (1980). Purification and primary structure determination of the N-terminal blocked protein, L11, from Escherichia coli ribosomes. Eur. J. Biochem. 112: 131–151, https://doi.org/10.1111/j.1432-1033.1980.tb04995.x.Suche in Google Scholar

Dolle, C., Rack, J.G., and Ziegler, M. (2013). NAD and ADP-ribose metabolism in mitochondria. FEBS J. 280: 3530–3541, https://doi.org/10.1111/febs.12304.Suche in Google Scholar

Dong, H., Zhai, G., Chen, C., Bai, X., Tian, S., Hu, D., Fan, E., and Zhang, K. (2019). Protein lysine de-2-hydroxyisobutyrylation by CobB in prokaryotes. Sci. Adv. 5: eaaw6703, https://doi.org/10.1126/sciadv.aaw6703.Suche in Google Scholar

Drazic, A., Myklebust, L.M., Ree, R., and Arnesen, T. (2016). The world of protein acetylation. Biochim. Biophys. Acta Protein Proteonomics 1864: 1372–1401, https://doi.org/10.1016/j.bbapap.2016.06.007.Suche in Google Scholar

Du, J.T., Zhou, Y.Y., Su, X.Y., Yu, J.J., Khan, S., Jiang, H., Kim, J., Woo, J., Kim, J.H., Choi, B.H., et al.. (2011). Sirt5 Is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334: 806–809, https://doi.org/10.1126/science.1207861.Suche in Google Scholar

Dunn, J.A., Patrick, J.S., Thorpe, S.R., and Baynes, J.W. (1989). Oxidation of glycated proteins: age-dependent accumulation of Nε-(carboxymethyl)lysine in lens proteins. Biochemistry 28: 9464–9468, https://doi.org/10.1021/bi00450a033.Suche in Google Scholar

Dunn, J.A., McCance, D.R., Thorpe, S.R., Lyons, T.J., and Baynes, J.W. (1991). Age-dependent accumulation of Nε-(carboxymethyl)lysine and Nε-(carboxymethyl)hydroxylysine in human skin collagen. Biochemistry 30: 1205–1210, https://doi.org/10.1021/bi00219a007.Suche in Google Scholar

Eisenbach, M. (2007). A Hitchhiker’s guide through advances and conceptual changes in chemotaxis. J. Cell. Physiol. 213: 574–580, https://doi.org/10.1002/jcp.21238.Suche in Google Scholar

Elharar, Y., Roth, Z., Hermelin, I., Moon, A., Peretz, G., Shenkerman, Y., Vishkautzan, M., Khalaila, I., and Gur, E. (2014). Survival of mycobacteria depends on proteasome-mediated amino acid recycling under nutrient limitation. EMBO J. 33: 1802–1814, https://doi.org/10.15252/embj.201387076.Suche in Google Scholar

Erbersdobler, H.F. and Faist, V. (2001). Metabolic transit of Amadori products. Nahrung 45: 177–181, https://doi.org/10.1002/1521-3803(20010601)45:3<177::aid-food177>3.0.co;2-a.10.1002/1521-3803(20010601)45:3<177::AID-FOOD177>3.0.CO;2-ASuche in Google Scholar

Erbersdobler, H.F., Gunsser, I., and Weber, G. (1970). Degradation of fructoselysine by the intestinal flora. Zentralblatt für Veterinarmed. A. 17: 573–575.10.1111/j.1439-0442.1970.tb00811.xSuche in Google Scholar

Fairhead, M. and Howarth, M. (2015). Site-specific biotinylation of purified proteins using BirA. Methods Mol. Biol. 1266: 171–184, https://doi.org/10.1007/978-1-4939-2272-7_12.Suche in Google Scholar PubMed PubMed Central

Falnes, P.O., Jakobsson, M.E., Davydova, E., Ho, A., and Malecki, J. (2016). Protein lysine methylation by seven-β-strand methyltransferases. Biochem. J. 473: 1995–2009, https://doi.org/10.1042/bcj20160117.Suche in Google Scholar

Favrot, L., Blanchard, J.S., and Vergnolle, O. (2016). Bacterial GCN5-related N-acetyltransferases: from resistance to regulation. Biochemistry 55: 989–1002, https://doi.org/10.1021/acs.biochem.5b01269.Suche in Google Scholar PubMed PubMed Central

Festa, R.A., McAllister, F., Pearce, M.J., Mintseris, J., Burns, K.E., Gygi, S.P., and Darwin, K.H. (2010). Prokaryotic ubiquitin-like protein (Pup) proteome of Mycobacterium tuberculosis. PLoS One 5: e8589, https://doi.org/10.1371/journal.pone.0008589.Suche in Google Scholar PubMed PubMed Central

Finley, D. (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78: 477–513, https://doi.org/10.1146/annurev.biochem.78.081507.101607.Suche in Google Scholar PubMed PubMed Central

Finot, P.A., Bujard, E., Mottu, F., and Mauron, J. (1977). Availability of the true Schiff’s bases of lysine. Chemical evaluation of the Schiff’s base between lysine and lactose in milk. Adv. Exp. Med. Biol. 86b: 343–365, https://doi.org/10.1007/978-1-4757-9113-6_23.Suche in Google Scholar PubMed

Fraiberg, M., Afanzar, O., Cassidy, C.K., Gabashvili, A., Schulten, K., Levin, Y., and Eisenbach, M. (2015). CheY’s acetylation sites responsible for generating clockwise flagellar rotation in Escherichia coli. Mol. Microbiol. 95: 231–244, https://doi.org/10.1111/mmi.12858.Suche in Google Scholar PubMed PubMed Central

Fuentes, V., Estévez, M., Ventanas, J., and Ventanas, S. (2014). Impact of lipid content and composition on lipid oxidation and protein carbonylation in experimental fermented sausages. Food Chem. Toxicol. 147: 70–77, https://doi.org/10.1016/j.foodchem.2013.09.100.Suche in Google Scholar PubMed

Gaffney, D.O., Jennings, E.Q., Anderson, C.C., Marentette, J.O., Shi, T., Schou Oxvig, A.-M., Streeter, M.D., Johannsen, M., Spiegel, D.A., Chapman, E., et al.. (2020). Non-enzymatic lysine lactoylation of glycolytic enzymes. Cell Chem. Biol. 27: 206–213.e206, https://doi.org/10.1016/j.chembiol.2019.11.005.Suche in Google Scholar PubMed PubMed Central

Gallego-Jara, J., Ecija Conesa, A., de Diego Puente, T., Lozano Terol, G., and Canovas Diaz, M. (2017). Characterization of CobB kinetics and inhibition by nicotinamide. PLoS One 12: e0189689, https://doi.org/10.1371/journal.pone.0189689.Suche in Google Scholar PubMed PubMed Central

Gandotra, S., Schnappinger, D., Monteleone, M., Hillen, W., and Ehrt, S. (2007). In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat. Med. 13: 1515–1520, https://doi.org/10.1038/nm1683.Suche in Google Scholar PubMed PubMed Central

Gardner, J.G., Grundy, F.J., Henkin, T.A., and Escalante-Semerena, J.C. (2006). Control of acetyl-coenzyme A synthetase (AcsA) activity by acetylation/deacetylation without NAD+ involvement in Bacillus subtilis. J. Bacteriol. 188: 5460–5468, https://doi.org/10.1128/jb.00215-06.Suche in Google Scholar

Garrity, J., Gardner, J.G., Hawse, W., Wolberger, C., and Escalante-Semerena, J.C. (2007). N-lysine propionylation controls the activity of propionyl-CoA synthetase. J. Biol. Chem. 282: 30239–30245, https://doi.org/10.1074/jbc.m704409200.Suche in Google Scholar PubMed

Gattner, M.J., Vrabel, M., and Carell, T. (2013). Synthesis of Nε-propionyl-, Nε-butyryl-, and Nε-crotonyl-lysine containing histone H3 using the pyrrolysine system. Chem. Commun. 49: 379–381, https://doi.org/10.1039/c2cc37836a.Suche in Google Scholar PubMed

Gemayel, R., Fortpied, J., Rzem, R., Vertommen, D., Veiga-da-Cunha, M., and Van Schaftingen, E. (2007). Many fructosamine 3-kinase homologues in bacteria are ribulosamine/erythrulosamine 3-kinases potentially involved in protein deglycation. FEBS J. 274: 4360–4374, https://doi.org/10.1111/j.1742-4658.2007.05948.x.Suche in Google Scholar PubMed

Gerhardinger, C., Marion, M.S., Rovner, A., Glomb, M., and Monnier, V.M. (1995). Novel degradation pathway of glycated amino acids into free fructosamine by a Pseudomonas sp. soil strain extract. J. Biol. Chem. 270: 218–224, https://doi.org/10.1074/jbc.270.1.218.Suche in Google Scholar PubMed

Glickman, M.H. and Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82: 373–428, https://doi.org/10.1152/physrev.00027.2001.Suche in Google Scholar PubMed

Globisch, M., Kaden, D., and Henle, T. (2015). 4-Hydroxy-2-nonenal (4-HNE) and its lipation product 2-pentylpyrrole lysine (2-PPL) in peanuts. J. Agric. Food Chem. 63: 5273–5281, https://doi.org/10.1021/acs.jafc.5b01502.Suche in Google Scholar PubMed

Gorissea, L., Pietrement, C., Vuiblet, V., Schmelzer, C.E.H., Kohler, M., Duca, L., Debelle, L., Fornes, P., Jaisson, S., and Gillery, P. (2016). Protein carbamylation is a hallmark of aging. Proc. Natl. Acad. Sci. U.S.A. 113: 1191–1196, https://doi.org/10.1073/pnas.1517096113.Suche in Google Scholar PubMed PubMed Central

Graf von Armansperg, B., Koller, F., Gericke, N., Hellwig, M., Jagtap, P.K.A., Heermann, R., Hennig, J., Henle, T., and Lassak, J. (2021). Transcriptional regulation of the Nε-fructoselysine metabolism in Escherichia coli by global and substrate-specific cues. Mol. Microbiol. 115: 175–190, https://doi.org/10.1111/mmi.14608. 32979851.Suche in Google Scholar PubMed

Gregoretti, I.V., Lee, Y.M., and Goodson, H.V. (2004). Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol. 338: 17–31, https://doi.org/10.1016/j.jmb.2004.02.006.Suche in Google Scholar PubMed

Greiss, S. and Gartner, A. (2009). Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation. Mol. Cell. 28: 407–415, https://doi.org/10.1007/s10059-009-0169-x.Suche in Google Scholar PubMed PubMed Central

Griffiths, D.R. and Pridham, J.B. (1980). The metabolism of 1-(ε-N-lysyl)-1-deoxy-d-fructose by Escherichia coli. J. Sci. Food Agric. 31: 1214–1220, https://doi.org/10.1002/jsfa.2740311113.Suche in Google Scholar

Groninger, H.S. and Miller, R. (1979). Some chemical and nutritional properties of acylated fish-protein. J. Agric. Food Chem. 27: 949–955, https://doi.org/10.1021/jf60225a049.Suche in Google Scholar PubMed

Groninger, H.S.J. and Ruth, M. (1973). Preparation and properties of succinylated fish myofibrillar protein. J. Agric. Food Chem. 21: 978–981, https://doi.org/10.1021/jf60190a027.Suche in Google Scholar

Grunwald, S., Krause, R., Bruch, M., Henle, T., and Brandsch, M. (2006). Transepithelial flux of early and advanced glycation compounds across CaCo-2 cell monolayers and their interaction with intestinal amino acid and peptide transport systems. Br. J. Nutr. 95: 1221–1228, https://doi.org/10.1079/bjn20061793.Suche in Google Scholar PubMed

Haglund, K. and Dikic, I. (2005). Ubiquitylation and cell signaling. EMBO J. 24: 3353–3359, https://doi.org/10.1038/sj.emboj.7600808.Suche in Google Scholar PubMed PubMed Central

Harvey, K.L., Jarocki, V.M., Charles, I.G., and Djordjevic, S.P. (2019). The diverse functional roles of elongation factor Tu (EF-Tu) in microbial pathogenesis. Front. Microbiol. 10: 2351, https://doi.org/10.3389/fmicb.2019.02351.Suche in Google Scholar PubMed PubMed Central

He, M., Zhou, Z., Shah, A.A., Zou, H., Tao, J., Chen, Q., and Wan, Y. (2016). The emerging role of deubiquitinating enzymes in genomic integrity, diseases, and therapeutics. Cell Biosci. 6: 62, https://doi.org/10.1186/s13578-016-0127-1.Suche in Google Scholar PubMed PubMed Central

He, D., Lv, Y., and Tong, Q. (2019). Succinylation improves the thermal stability of egg white proteins. Molecules 24: 3783, https://doi.org/10.3390/molecules24203783.Suche in Google Scholar PubMed PubMed Central

Helbig, A.O., Gauci, S., Raijmakers, R., van Breukelen, B., Slijper, M., Mohammed, S., and Heck, A.J.R. (2010). Profiling of N-acetylated protein termini provides in-depth insights into the N-terminal nature of the proteome. Mol. Cell. Proteomics 9: 928–939, https://doi.org/10.1074/mcp.m900463-mcp200.Suche in Google Scholar PubMed PubMed Central

Hellwig, M., and Henle, T. (2019). Advanced glycation end products (AGEs): occurrence and risk Assessment. In: Melton, L., Shahidi, F. and Varelis, P. (Eds.). Encyclopedia of food chemistry, 3rd ed. Elesevier Science, Amsterdam, Netherlands, pp. 525–531.10.1016/B978-0-08-100596-5.21822-2Suche in Google Scholar

Hellwig, M., Geissler, S., Matthes, R., Peto, A., Silow, C., Brandsch, M., and Henle, T. (2011). Transport of free and peptide-bound glycated amino acids: synthesis, transepithelial flux at Caco-2 cell monolayers, and interaction with apical membrane transport proteins. Chembiochem 12: 1270–1279, https://doi.org/10.1002/cbic.201000759.Suche in Google Scholar PubMed

Hellwig, M., Bunzel, D., Huch, M., Franz, C.M., Kulling, S.E., and Henle, T. (2015). Stability of individual Maillard reaction products in the presence of the human colonic microbiota. J. Agric. Food Chem. 63: 6723–6730, https://doi.org/10.1021/acs.jafc.5b01391.Suche in Google Scholar PubMed

Hellwig, M. (2019). The chemistry of protein oxidation in food. Angew. Chem. Int. Ed. Engl. 58: 16742–16763, https://doi.org/10.1002/anie.201814144. 30919556.Suche in Google Scholar PubMed

Hellwig, M., Auerbach, C., Müller, N., Samuel, P., Kammann, S., Beer, F., Gunzer, F., and Henle, T. (2019). Metabolization of the advanced glycation end product Nε-carboxymethyllysine (CML) by different probiotic E. coli strains. J. Agric. Food Chem. 67: 1963–1972, https://doi.org/10.1021/acs.jafc.8b06748.Suche in Google Scholar PubMed

Helsens, K., Van Damme, P., Degroeve, S., Martens, L., Arnesen, T., Vandekerckhove, J., and Gevaert, K. (2011). Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation. J. Proteome Res. 10: 3578–3589, https://doi.org/10.1021/pr2002325.Suche in Google Scholar PubMed

Henle, T. (2003). AGEs in foods: do they play a role in uremia? Kidney Int. 63: S145–S147, https://doi.org/10.1046/j.1523-1755.63.s84.16.x.Suche in Google Scholar PubMed

Henle, T., Walter, H., and Klostermeyer, H. (1991). Evaluation of the extent of the early Maillard-reaction in milk products by direct measurement of the Amadori-product lactuloselysine. Z. Lebensm. Unters. Forsch. 193: 119–122, https://doi.org/10.1007/bf01193359.Suche in Google Scholar PubMed

Henning, C., Smuda, M., Girndt, M., Ulrich, C., and Glomb, M.A. (2011). Molecular basis of maillard amide-advanced glycation end product (AGE) formation in vivo. J. Biol. Chem. 286: 44350–44356, https://doi.org/10.1074/jbc.m111.282442.Suche in Google Scholar

Henriksen, P., Wagner, S.A., Weinert, B.T., Sharma, S., Bacinskaja, G., Rehman, M., Juffer, A.H., Walther, T.C., Lisby, M., and Choudhary, C. (2012). Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol. Cell. Proteomics 11: 1510–1522, https://doi.org/10.1074/mcp.m112.017251.Suche in Google Scholar

Hentchel, K.L. and Escalante-Semerena, J.C. (2015). Acylation of biomolecules in prokaryotes: a widespread strategy for the control of biological function and metabolic stress. Microbiol. Mol. Biol. Rev. 79: 321–346, https://doi.org/10.1128/mmbr.00020-15.Suche in Google Scholar

Herrmann, J., Lerman, L.O., and Lerman, A. (2007). Ubiquitin and ubiquitin-like proteins in protein regulation. Circ. Res. 100: 1276–1291, https://doi.org/10.1161/01.res.0000264500.11888.f0.Suche in Google Scholar

Hersch, S.J., Wang, M., Zou, S.B., Moon, K.M., Foster, L.J., Ibba, M., and Navarre, W.W. (2013). Divergent protein motifs direct elongation factor P-mediated translational regulation in Salmonella enterica and Escherichia coli. mBio 4: e00180–00113, https://doi.org/10.1128/mBio.00180-13.Suche in Google Scholar

Hershko, A. and Ciechanover, A. (1998). The ubiquitin system. Annu. Rev. Biochem. 67: 425–479, https://doi.org/10.1146/annurev.biochem.67.1.425.Suche in Google Scholar

Heveker, N., Bonnaffé, D., and Ullmann, A. (1994). Chemical fatty acylation confers hemolytic and toxic activities to adenylate cyclase protoxin of Bordetella pertussis. J. Biol. Chem. 269: 32844–32847, https://doi.org/10.1016/s0021-9258(20)30068-5.Suche in Google Scholar

Heyns, K., Breuer, H., and Paulsen, H. (1957). Darstellung und Verhalten der 2-N-Aminosäure-2-Desoxy-Glucosen („Glucose-Aminosäuren”) aus Glycin, Alanin, Leucin und Fructose. Chem. Ber. 90: 1374–1386, https://doi.org/10.1002/cber.19570900735.Suche in Google Scholar

Hildmann, C., Riester, D., and Schwienhorst, A. (2007). Histone deacetylases-an important class of cellular regulators with a variety of functions. Appl. Microbiol. Biotechnol. 75: 487–497, https://doi.org/10.1007/s00253-007-0911-2.Suche in Google Scholar PubMed

Hochstrasser, M. (2009). Origin and function of ubiquitin-like proteins. Nature 458: 422–429, https://doi.org/10.1038/nature07958. 19325621.Suche in Google Scholar PubMed PubMed Central

Holland, I.B., Peherstorfer, S., Kanonenberg, K., Lenders, M., Reimann, S., and Schmitt, L. (2016). Type I protein secretion-deceptively simple yet with a wide range of mechanistic variability across the family. EcoSal Plus 7: ESP-0019-2015, https://doi.org/10.1128/ecosalplus.ESP-0019-2015.Suche in Google Scholar

Horiuchi, T., Kurokawa, T., and Saito, N. (1989). Purification and properties of fructosyl-amino acid oxidase from Corynebacterium sp. 2-4-1. Agric. Biol. Chem. 53: 103–110, https://doi.org/10.1271/bbb1961.53.103.Suche in Google Scholar

Horstmann, J.A., Lunelli, M., Cazzola, H., Heidemann, J., Kühne, C., Steffen, P., Szefs, S., Rossi, C., Lokareddy, R.K., Wang, C., et al.. (2020). Methylation of Salmonella Typhimurium flagella promotes bacterial adhesion and host cell invasion. Nat. Commun. 11: 2013, https://doi.org/10.1038/s41467-020-15738-3.Suche in Google Scholar

Hoskisson, P.A. and Rigali, S. (2009). Chapter 1: variation in form and function the helix-turn-helix regulators of the GntR superfamily. Adv. Appl. Microbiol. 69: 1–22, https://doi.org/10.1016/s0065-2164(09)69001-8.Suche in Google Scholar

Hottiger, M.O. (2011). ADP-ribosylation of histones by ARTD1: an additional module of the histone code? FEBS Lett. 585: 1595–1599, https://doi.org/10.1016/j.febslet.2011.03.031.Suche in Google Scholar

Hrycyna, C.A. and Clarke, S. (1993). Modification of eukaryotic signaling proteins by C-terminal methylation reactions. Pharmacol. Ther. 59: 281–300, https://doi.org/10.1016/0163-7258(93)90071-k.Suche in Google Scholar

Hu, L.I., Lima, B.P., and Wolfe, A.J. (2010). Bacterial protein acetylation: the dawning of a new age. Mol. Microbiol. 77: 15–21, https://doi.org/10.1111/j.1365-2958.2010.07204.x.Suche in Google Scholar PubMed PubMed Central

Huang, L., Kinnucan, E., Wang, G., Beaudenon, S., Howley, P.M., Huibregtse, J.M., and Pavletich, N.P. (1999). Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286: 1321–1326, https://doi.org/10.1126/science.286.5443.1321.Suche in Google Scholar PubMed

Huang, H., Zhang, D., Wang, Y., Perez-Neut, M., Han, Z., Zheng, Y.G., Hao, Q., and Zhao, Y. (2018). Lysine benzoylation is a histone mark regulated by SIRT2. Nat. Commun. 9: 3374, https://doi.org/10.1038/s41467-018-05567-w.Suche in Google Scholar PubMed PubMed Central

Humbard, M.A., Miranda, H.V., Lim, J.M., Krause, D.J., Pritz, J.R., Zhou, G., Chen, S., Wells, L., and Maupin-Furlow, J.A. (2010). Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature 463: 54–60, https://doi.org/10.1038/nature08659.Suche in Google Scholar PubMed PubMed Central

Hummels, K.R., Witzky, A., Rajkovic, A., Tollerson, R.2nd, Jones, L.A., Ibba, M., and Kearns, D.B. (2017). Carbonyl reduction by YmfI in Bacillus subtilis prevents accumulation of an inhibitory EF-P modification state. Mol. Microbiol. 106: 236–251, https://doi.org/10.1111/mmi.13760.Suche in Google Scholar PubMed PubMed Central

Huter, P., Arenz, S., Bock, L.V., Graf, M., Frister, J.O., Heuer, A., Peil, L., Starosta, A.L., Wohlgemuth, I., Peske, F., et al.. (2017). Structural basis for polyproline-mediated ribosome stalling and rescue by the translation elongation factor EF-P. Mol. Cell. 68: 515–527.e516, https://doi.org/10.1016/j.molcel.2017.10.014.Suche in Google Scholar PubMed

Imai, S. and Guarente, L. (2010). Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol. Sci. 31: 212–220, https://doi.org/10.1016/j.tips.2010.02.003.Suche in Google Scholar PubMed PubMed Central

Imkamp, F., Striebel, F., Sutter, M., Ozcelik, D., Zimmermann, N., Sander, P., and Weber-Ban, E. (2010). Dop functions as a depupylase in the prokaryotic ubiquitin-like modification pathway. EMBO Rep. 11: 791–797, https://doi.org/10.1038/embor.2010.119.Suche in Google Scholar PubMed PubMed Central

Isobe, K. (2010). Enzymes responsible for metabolism of Nα-benzyloxycarbonyl-l-lysine in microorganisms. Nat. Biotechnol. 27: 751–754, https://doi.org/10.1016/j.nbt.2010.05.001.Suche in Google Scholar PubMed

Iyer, L.M., Burroughs, A.M., and Aravind, L. (2006). The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like beta-grasp domains. Genome Biol. 7: R60, https://doi.org/10.1186/gb-2006-7-7-r60.Suche in Google Scholar PubMed PubMed Central

Jack, D.L., Paulsen, I.T., and Saier, M.H. (2000). The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiol. SGM 146: 1797–1814, https://doi.org/10.1099/00221287-146-8-1797.Suche in Google Scholar PubMed

Johansen, M.B., Kiemer, L., and Brunak, S. (2006). Analysis and prediction of mammalian protein glycation. Glycobiology 16: 844–853, https://doi.org/10.1093/glycob/cwl009.Suche in Google Scholar PubMed

Johansson, M., Ieong, K.W., Trobro, S., Strazewski, P., Aqvist, J., Pavlov, M.Y., and Ehrenberg, M. (2011). pH-sensitivity of the ribosomal peptidyl transfer reaction dependent on the identity of the A-site aminoacyl-tRNA. Proc. Natl. Acad. Sci. U.S.A. 108: 79–84, https://doi.org/10.1073/pnas.1012612107.Suche in Google Scholar PubMed PubMed Central

Joshi, A.D., Mustafa, M.G., Lichti, C.F., and Elferink, C.J. (2015). Homocitrullination is a novel histone H1 epigenetic mark dependent on aryl hydrocarbon receptor recruitment of carbamoyl phosphate synthase 1. J. Biol. Chem. 290: 27767–27778, https://doi.org/10.1074/jbc.m115.678144.Suche in Google Scholar

Joyce, M.A., Hayakawa, K., Wolodko, W.T., and Fraser, M.E. (2012). Biochemical and structural characterization of the GTP-preferring succinyl-CoA synthetase from Thermus aquaticus. Acta Crystallogr. D Biol. Crystallogr. 68: 751–762, https://doi.org/10.1107/S0907444912010852. 22751660.Suche in Google Scholar PubMed PubMed Central

Kang, K.R., Kim, Y.S., Wolff, E.C., and Park, M.H. (2007). Specificity of the deoxyhypusine hydroxylase-eukaryotic translation initiation factor (eIF-5A) interaction – identification of amino acid residues of the enzyme required for binding of its substrate, deoxyhypusine-containing eIF-5A. J. Biol. Chem. 282: 8300–8308, https://doi.org/10.1074/jbc.m607495200.Suche in Google Scholar PubMed PubMed Central

Keating, D.H., Shulla, A., Klein, A.H., and Wolfe, A.J. (2008). Optimized two-dimensional thin layer chromatography to monitor the intra cellular concentration of acetyl phosphate and other small phosphorylated molecules. Biol. Proced. Online 10: 36–46, https://doi.org/10.1251/bpo141.Suche in Google Scholar PubMed PubMed Central

Kentache, T., Jouenne, T., De, E., and Hardouin, J. (2016). Proteomic characterization of Nα- and Nε-acetylation in Acinetobacter baumannii. J. Proteonomics 144: 148–158, https://doi.org/10.1016/j.jprot.2016.05.021.Suche in Google Scholar PubMed

Khoury, G.A., Baliban, R.C., and Floudas, C.A. (2011). Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci. Rep. 1: 90, https://doi.org/10.1038/srep00090.Suche in Google Scholar PubMed PubMed Central

Kim, N.Y., Goddard, T.N., Sohn, S., Spiegel, D.A., and Crawford, J.M. (2019). Biocatalytic reversal of advanced glycation end product modification. Chembiochem 20: 2402–2410, https://doi.org/10.1002/cbic.201900158.Suche in Google Scholar PubMed PubMed Central

Klein, A.H., Shulla, A., Reimann, S.A., Keating, D.H., and Wolfe, A.J. (2007). The intracellular concentration of acetyl phosphate in Escherichia coli is sufficient for direct phosphorylation of two-component response regulators. J. Bacteriol. 189: 5574–5581, https://doi.org/10.1128/jb.00564-07.Suche in Google Scholar

Kobayashi, K., Katz, A., Rajkovic, A., Ishii, R., Branson, O.E., Freitas, M.A., Ishitani, R., Ibba, M., and Nureki, O. (2014). The non-canonical hydroxylase structure of YfcM reveals a metal ion-coordination motif required for EF-P hydroxylation. Nucleic Acids Res. 42: 12295–12305, https://doi.org/10.1093/nar/gku898.Suche in Google Scholar PubMed PubMed Central

Kojima, K., Mikami-Sakaguchi, A., Kameya, M., Miyamoto, Y., Ferri, S., Tsugawa, W., and Sode, K. (2013). Substrate specificity engineering of Escherichia coli derived fructosamine 6-kinase. Biotechnol. Lett. 35: 253–258, https://doi.org/10.1007/s10529-012-1062-9.Suche in Google Scholar PubMed

Koller, F., and Lassak, J. (2021). Two RmlC homologs catalyze dTDP-4-keto-6-deoxy-D-glucose epimerization in Pseudomonas putida KT2440. Sci. Rep. 11: 11991, https://doi.org/10.1038/s41598-021-91421-x. 34099824.Suche in Google Scholar PubMed PubMed Central

Komander, D. (2009). The emerging complexity of protein ubiquitination. Biochem. Soc. Trans. 37: 937–953, https://doi.org/10.1042/bst0370937.Suche in Google Scholar

Komaniecki, G., and Lin, H. (2021). Lysine fatty acylation: regulatory enzymes, research tools, and biological function. Front. Cell Dev. Biol. 9: 717503, https://doi.org/10.3389/fcell.2021.717503.Suche in Google Scholar

Kong, L., Fromant, M., Blanquet, S., and Plateau, P. (1991). Evidence for a new Escherichia coli protein resembling a lysyl-tRNA synthetase. Gene 108: 163–164, https://doi.org/10.1016/0378-1119(91)90503-4.Suche in Google Scholar

Krafczyk, R., Macosek, J., Jagtap, P.K.A., Gast, D., Wunder, S., Mitra, P., Jha, A.K., Rohr, J., Hoffmann-Roder, A., and Jung, K., et al.. (2017). Structural basis for EarP-mediated arginine glycosylation of translation elongation factor EF-P. mBio 8: mBio.01412-17, https://doi.org/10.1128/mBio.01412-17.Suche in Google Scholar PubMed PubMed Central

Krafczyk, R., Qi, F., Sieber, A., Mehler, J., Jung, K., Frishman, D., and Lassak, J. (2021). Proline codon pair selection determines ribosome pausing strength and translation efficiency in bacteria. Commun. Biol. 4: 589, https://doi.org/10.1038/s42003-021-02115-z.Suche in Google Scholar PubMed PubMed Central

Kröger, C., Colgan, A., Srikumar, S., Handler, K., Sivasankaran, S.K., Hammarlof, D.L., Canals, R., Grissom, J.E., Conway, T., Hokamp, K., et al.. (2013). An infection-relevant transcriptomic compendium for Salmonella enterica Serovar Typhimurium. Cell Host Microbe 14: 683–695, https://doi.org/10.1016/j.chom.2013.11.010.Suche in Google Scholar PubMed

Küberl, A., Polen, T., and Bott, M. (2016). The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin. Proc. Natl. Acad. Sci. U.S.A. 113: 4806–4811.10.1073/pnas.1514529113Suche in Google Scholar PubMed PubMed Central

Kuhn, M.L., Zemaitaitis, B., Hu, L.I., Sahu, A., Sorensen, D., Minasov, G., Lima, B.P., Scholle, M., Mrksich, M., and Anderson, W.F., et al. (2014). Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation. PLoS One 9: e94816, https://doi.org/10.1371/journal.pone.0094816.Suche in Google Scholar PubMed PubMed Central

Kumar, S., Yoshida, Y., and Noda, M. (1993). Cloning of a cDNA which encodes a novel ubiquitin-like protein. Biochem. Biophys. Res. Commun. 195: 393–399, https://doi.org/10.1006/bbrc.1993.2056.Suche in Google Scholar PubMed

Kumari, S., Tishel, R., Eisenbach, M., and Wolfe, A.J. (1995). Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 177: 2878–2886, https://doi.org/10.1128/jb.177.10.2878-2886.1995.Suche in Google Scholar PubMed PubMed Central

Kunert, A., Losse, J., Gruszin, C., Hühn, M., Kaendler, K., Mikkat, S., Volke, D., Hoffmann, R., Jokiranta, T.S., Seeberger, H., et al.. (2007). Immune evasion of the human pathogen Pseudomonas aeruginosa: elongation factor Tuf is a factor H and plasminogen binding protein. J. Immunol. 179: 2979–2988, https://doi.org/10.4049/jimmunol.179.5.2979.Suche in Google Scholar PubMed

Kurmi, K., Hitosugi, S., Wiese, E.K., Boakye-Agyeman, F., Gonsalves, W.I., Lou, Z., Karnitz, L.M., Goetz, M.P., and Hitosugi, T. (2018). Carnitine palmitoyltransferase 1A has a lysine succinyltransferase activity. Cell Rep. 22: 1365–1373, https://doi.org/10.1016/j.celrep.2018.01.030.Suche in Google Scholar PubMed PubMed Central

Labuza, T.P., Monnier, V., Baynes, J., and O’Brien, J. (1998). Maillard reactions in chemistry, food and health. Elsevier Science, Amsterdam, Netherlands.Suche in Google Scholar

Lan, F. and Shi, Y. (2009). Epigenetic regulation: methylation of histone and non-histone proteins. Sci. China Life Sci. 52: 311–322, https://doi.org/10.1007/s11427-009-0054-z.Suche in Google Scholar PubMed

Lanouette, S., Mongeon, V., Figeys, D., and Couture, J.F. (2014). The functional diversity of protein lysine methylation. Mol. Syst. Biol. 10: 724, https://doi.org/10.1002/msb.134974.Suche in Google Scholar PubMed PubMed Central

Lassak, J., Keilhauer, E.C., Furst, M., Wuichet, K., Godeke, J., Starosta, A.L., Chen, J.M., Sogaard-Andersen, L., Rohr, J., Wilson, D.N., et al.. (2015). Arginine-rhamnosylation as new strategy to activate translation elongation factor P. Nat. Chem. Biol. 11: 266–270, https://doi.org/10.1038/nchembio.1751.Suche in Google Scholar PubMed PubMed Central

Lassak, J., Koller, F., Krafczyk, R., and Volkwein, W. (2019). Exceptionally versatile - arginine in bacterial post-translational protein modifications. Biol. Chem. 400: 1397–1427, https://doi.org/10.1515/hsz-2019-0182. 31188742.Suche in Google Scholar PubMed

Lassak, J., Wilson, D.N., and Jung, K. (2016). Stall no more at polyproline stretches with the translation elongation factors EF-P and IF-5A. Mol. Microbiol. 99: 219–235, https://doi.org/10.1111/mmi.13233.Suche in Google Scholar PubMed

Lee, J., Manning, A.J., Wolfgeher, D., Jelenska, J., Cavanaugh, K.A., Xu, H.Q., Fernandez, S.M., Michelmore, R.W., Kron, S.J., and Greenberg, J.T. (2015). Acetylation of an NB-LRR plant immune-effector complex suppresses immunity. Cell Rep. 13: 1670–1682, https://doi.org/10.1016/j.celrep.2015.10.029.Suche in Google Scholar PubMed PubMed Central

Lee, K. and Erbersdobler, H.F. (1994). Balance experiments on human volunteers with Nε-fructoselysine (FL) and lysinoalanine (LAL). Cambridge: Royal Society of Chemistry.Suche in Google Scholar

Lehnik-Habrink, M., Rempeters, L., Kovacs, A.T., Wrede, C., Baierlein, C., Krebber, H., Kuipers, O.P., and Stülke, J. (2013). DEAD-Box RNA helicases in Bacillus subtilis have multiple functions and act independently from each other. J. Bacteriol. 195: 534–544, https://doi.org/10.1128/jb.01475-12.Suche in Google Scholar

Li, R., Gu, J., Chen, Y.Y., Xiao, C.L., Wang, L.W., Zhang, Z.P., Bi, L.J., Wei, H.P., Wang, X.D., Deng, J.Y., et al.. (2010). CobB regulates Escherichia coli chemotaxis by deacetylating the response regulator CheY. Mol. Microbiol. 76: 1162–1174, https://doi.org/10.1111/j.1365-2958.2010.07125.x.Suche in Google Scholar PubMed PubMed Central

Li, X., Krafczyk, R., Macošek, J., Li, Y.L., Zou, Y., Simon, B., Pan, X., Wu, Q.Y., Yan, F., Li, S., et al.. (2016). Resolving the α-glycosidic linkage of arginine-rhamnosylated translation elongation factor P triggers generation of the first Arg(Rha) specific antibody. Chem. Sci. 7: 6995–7001, https://doi.org/10.1039/c6sc02889f.Suche in Google Scholar PubMed PubMed Central

Li, S.X., Zhang, Q.F., Xu, Z.H., and Yao, Y.F. (2017). Acetylation of lysine 243 inhibits the oriC binding ability of DnaA in Escherichia coli. Front. Microbiol. 8: 699, https://doi.org/10.3389/fmicb.2017.00699.Suche in Google Scholar PubMed PubMed Central

Liang, W.X., Malhotra, A., and Deutscher, M.P. (2011). Acetylation regulates the stability of a bacterial protein: growth stage-dependent modification of RNase R. Mol. Cell. 44: 160–166, https://doi.org/10.1016/j.molcel.2011.06.037.Suche in Google Scholar PubMed PubMed Central

Liao, S.H., Shang, Q., Zhang, X.C., Zhang, J.H., Xu, C., and Tu, X.M. (2009). Pup, a prokaryotic ubiquitin-like protein, is an intrinsically disordered protein. Biochem 422: 207–215, https://doi.org/10.1042/bj20090738.Suche in Google Scholar PubMed

Liarzi, O., Barak, R., Bronner, V., Dines, M., Sagi, Y., Shainskaya, A., and Eisenbach, M. (2010). Acetylation represses the binding of CheY to its target proteins. Mol. Microbiol. 76: 932–943, https://doi.org/10.1111/j.1365-2958.2010.07148.x.Suche in Google Scholar PubMed

Linhartova, I., Bumba, L., Masin, J., Basler, M., Osicka, R., Kamanova, J., Prochazkova, K., Adkins, I., Hejnova-Holubova, J., Sadilkova, L., et al.. (2010). RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 34: 1076–1112, https://doi.org/10.1111/j.1574-6976.2010.00231.x.Suche in Google Scholar PubMed PubMed Central

Liu, W., Zhou, Y., Peng, T., Zhou, P., Ding, X., Li, Z., Zhong, H., Xu, Y., Chen, S., Hang, H.C., et al.. (2018). Nε-fatty acylation of multiple membrane-associated proteins by Shigella IcsB effector to modulate host function. Nat. Microbiol. 3: 996–1009, https://doi.org/10.1038/s41564-018-0215-6.Suche in Google Scholar PubMed PubMed Central

Lombardi, P.M., Cole, K.E., Dowling, D.P., and Christianson, D.W. (2011). Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Curr. Opin. Struct. Biol. 21: 735–743, https://doi.org/10.1016/j.sbi.2011.08.004.Suche in Google Scholar PubMed PubMed Central

Lu, Y.X., Liu, X.X., Liu, W.B., and Ye, B.C. (2017). Identification and characterization of two types of amino acid-regulated acetyltransferases in actinobacteria. Biosci. Rep. 37: BSR20170157, https://doi.org/10.1042/BSR20170157.Suche in Google Scholar PubMed PubMed Central

Lund, M.N. (2021). Reactions of plant polyphenols in foods: impact of molecular structure. Trends Food Sci. Technol. 112: 241–251, https://doi.org/10.1016/j.tifs.2021.03.056.Suche in Google Scholar

Ma, K.W., and Ma, W.B. (2016). YopJ family effectors promote bacterial infection through a unique acetyltransferase activity. Microbiol. Mol. Biol. Rev. 80: 1011–1027, https://doi.org/10.1128/MMBR.00032-16.Suche in Google Scholar

Mahajan, R., Delphin, C., Guan, T., Gerace, L., and Melchior, F. (1997). A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88: 97–107, https://doi.org/10.1016/s0092-8674(00)81862-0.Suche in Google Scholar

Maillard, L.C. (1912a). The action of amino acids on sugar; the formation of melanoidin by a methodic route. C. R. Hebd. Seances Acad. Sci. 154: 66–68.Suche in Google Scholar

Maillard, L.C. (1912b). General reaction of amino acids on sugars: its biological consequences. C. R. Séances Soc. Biol. Ses. Fil. 72: 599–601.Suche in Google Scholar

Małecki, J., Dahl, H.A., Moen, A., Davydova, E., and Falnes, P. (2016). The METTL20 homologue from Agrobacterium tumefaciens is a dual specificity protein-lysine methyltransferase that targets ribosomal protein L7/L12 and the β-subunit of electron transfer flavoprotein (ETFβ). J. Biol. Chem. 291: 9581–9595, https://doi.org/10.1074/jbc.M115.709261.Suche in Google Scholar

Marmorstein, R. (2001). Structure of histone deacetylases: insights into substrate recognition and catalysis. Structure 9: 1127–1133, https://doi.org/10.1016/s0969-2126(01)00690-6.Suche in Google Scholar

Martin-Verstraete, I., Charrier, V., Stülke, J., Galinier, A., Erni, B., Rapoport, G., and Deutscher, J. (1998). Antagonistic effects of dual PTS-catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR. Mol. Microbiol. 28: 293–303, https://doi.org/10.1046/j.1365-2958.1998.00781.x.Suche in Google Scholar

Martin, J.L. and McMillan, F.M. (2002). SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr. Opin. Struct. Biol. 12: 783–793, https://doi.org/10.1016/s0959-440x(02)00391-3.Suche in Google Scholar

Marty, L., Vigouroux, A., Aumont-Nicaise, M., Dessaux, Y., Faure, D., and Morera, S. (2016). Structural basis for high specificity of Amadori compound and mannopine opine binding in bacterial pathogens. J. Biol. Chem. 291: 22638–22649, https://doi.org/10.1074/jbc.m116.745562.Suche in Google Scholar

Matunis, M.J., Coutavas, E., and Blobel, G. (1996). A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135: 1457–1470, https://doi.org/10.1083/jcb.135.6.1457.Suche in Google Scholar

Maveyraud, L., Golemi, D., Kotra, L.P., Tranier, S., Vakulenko, S., Mobashery, S., and Samama, J.P. (2000). Insights into class D β-lactamases are revealed by the crystal structure of the OXA10 enzyme from Pseudomonas aeruginosa. Structure 8: 1289–1298, https://doi.org/10.1016/s0969-2126(00)00534-7.Suche in Google Scholar

Mazzoleni, M., Figuet, S., Martin-Laffon, J., Mininno, M., Gilgen, A., Leroux, M., Brugière, S., Tardif, M., Alban, C., and Ravanel, S. (2015). Dual targeting of the protein methyltransferase PrmA contributes to both chloroplastic and mitochondrial ribosomal protein L11 methylation in Arabidopsis. Plant Cell Physiol. 56: 1697–1710, https://doi.org/10.1093/pcp/pcv098.Suche in Google Scholar PubMed

McDonnell, C.M., Ghanim, M., Southern, J.M., Kelly, V.P., and Connon, S.J. (2022). De-novo designed β-lysine derivatives can both augment and diminish the proliferation rates of E. coli through the action of elongation factor P. Bioorg. Med. Chem. Lett. 128545, https://doi.org/10.1016/j.bmcl.2022.128545. 35032607.Suche in Google Scholar PubMed

Mehta, B.M. and Deeth, H.C. (2016). Blocked lysine in dairy products: formation, occurrence, analysis, and nutritional implications. Compr. Rev. Food Sci. Food Saf. 15: 206–218, https://doi.org/10.1111/1541-4337.12178.Suche in Google Scholar PubMed

Meltretter, J., Seeber, S., Humeny, A., Becker, C.M., and Pischetsrieder, M. (2007). Site-specific formation of Maillard, oxidation, and condensation products from whey proteins during reaction with lactose. J. Agric. Food Chem. 55: 6096–6103, https://doi.org/10.1021/jf0705567.Suche in Google Scholar PubMed

Metzger, M.B., Hristova, V.A., and Weissman, A.M. (2012). HECT and RING finger families of E3 ubiquitin ligases at a glance. J. Cell Sci. 125: 531–537, https://doi.org/10.1242/jcs.091777.Suche in Google Scholar PubMed PubMed Central

Mihoub, M., Abdallah, J., Gontero, B., Dairou, J., and Richarme, G. (2015). The DJ-1 superfamily member Hsp31 repairs proteins from glycation by methylglyoxal and glyoxal. Biochem. Biophys. Res. Commun. 463: 1305–1310, https://doi.org/10.1016/j.bbrc.2015.06.111.Suche in Google Scholar PubMed

Miller, K.A., Phillips, R.S., Kilgore, P.B., Smith, G.L., and Hoover, T.R. (2015). A mannose family phosphotransferase system permease and associated enzymes are required for utilization of fructoselysine and glucoselysine in Salmonella enterica Serovar Typhimurium. J. Bacteriol. 197: 2831–2839, https://doi.org/10.1128/jb.00339-15.Suche in Google Scholar

Mironova, R., Niwa, T., Hayashi, H., Dimitrova, R., and Ivanov, I. (2001). Evidence for non-enzymatic glycosylation in Escherichia coli. Mol. Microbiol. 39: 1061–1068, https://doi.org/10.1046/j.1365-2958.2001.02304.x.Suche in Google Scholar PubMed

Miyazaki, J., Kobashi, N., Nishiyama, M., and Yamane, H. (2001). Functional and evolutionary relationship between arginine biosynthesis and prokaryotic lysine biosynthesis through α-aminoadipate. J. Bacteriol. 183: 5067–5073, https://doi.org/10.1128/jb.183.17.5067-5073.2001.Suche in Google Scholar

Moellering, R.E. and Cravatt, B.F. (2013). Functional lysine modification by an intrinsically reactive primary glycolytic metabolite. Science 341: 549–553, https://doi.org/10.1126/science.1238327.Suche in Google Scholar PubMed PubMed Central

Molle, V., Nakaura, Y., Shivers, R.P., Yamaguchi, H., Losick, R., Fujita, Y., and Sonenshein, A.L. (2003). Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J. Bacteriol. 185: 1911–1922, https://doi.org/10.1128/jb.185.6.1911-1922.2003.Suche in Google Scholar PubMed PubMed Central

Morgan, A.A., and Rubenstein, E. (2013). Proline: the distribution, frequency, positioning, and common functional roles of proline and polyproline sequences in the human proteome. PLoS One 8: e53785, https://doi.org/10.1371/journal.pone.0053785.Suche in Google Scholar

Mukhopadhyay, D. and Riezman, H. (2007). Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315: 201–205, https://doi.org/10.1126/science.1127085.Suche in Google Scholar

Murn, J. and Shi, Y. (2017). The winding path of protein methylation research: milestones and new frontiers. Nat. Rev. Mol. Cell Biol. 18: 517–527, https://doi.org/10.1038/nrm.2017.35.Suche in Google Scholar

Muto, H. and Ito, K. (2008). Peptidyi-prolyl-tRNA at the ribosomal P-site reacts poorly with puromycin. Biochem. Biophys. Res. Commun. 366: 1043–1047, https://doi.org/10.1016/j.bbrc.2007.12.072.Suche in Google Scholar

Nagano-Shoji, M., Hamamoto, Y., Mizuno, Y., Yamada, A., Kikuchi, M., Shirouzu, M., Umehara, T., Yoshida, M., Nishiyama, M., and Kosono, S. (2017). Characterization of lysine acetylation of a phosphoenolpyruvate carboxylase involved in glutamate overproduction in Corynebacterium glutamicum. Mol. Microbiol. 104: 677–689, https://doi.org/10.1111/mmi.13658.Suche in Google Scholar

Navarre, W.W., Zou, S.B., Roy, H., Xie, J.L., Savchenko, A., Singer, A., Edvokimova, E., Prost, L.R., Kumar, R., Ibba, M., et al.. (2010). PoxA, YjeK, and elongation factor P coordinately modulate virulence and drug resistance in Salmonella enterica. Mol. Cell. 39: 209–221, https://doi.org/10.1016/j.molcel.2010.06.021.Suche in Google Scholar

Neumann, H., Peak-Chew, S.Y., and Chin, J.W. (2008). Genetically encoding Nε-acetyllysine in recombinant proteins. Nat. Chem. Biol. 4: 232–234, https://doi.org/10.1038/nchembio.73.Suche in Google Scholar

Neuwald, A.F. and Landsman, D. (1997). GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biochem. Sci. 22: 154–155, https://doi.org/10.1016/s0968-0004(97)01034-7.Suche in Google Scholar

Ogura, M., and Kanesaki, Y. (2018). Newly identified nucleoid-associated-like protein YlxR regulates metabolic gene expression in Bacillus subtilis. mSphere 3: e00501-18, https://doi.org/10.1128/mSphere.00501-18.Suche in Google Scholar PubMed PubMed Central

Osickova, A., Khaliq, H., Masin, J., Jurnecka, D., Sukova, A., Fiser, R., Holubova, J., Stanek, O., Sebo, P., and Osicka, R. (2020). Acyltransferase-mediated selection of the length of the fatty acyl chain and of the acylation site governs activation of bacterial RTX toxins. J. Biol. Chem. 295: 9268–9280, https://doi.org/10.1074/jbc.ra120.014122.Suche in Google Scholar

Ouidir, T., Jarnier, F., Cosette, P., Jouenne, T., and Hardouin, J. (2015). Characterization of N-terminal protein modifications in Pseudomonas aeruginosa PA14. J. Proteonomics 114: 214–225, https://doi.org/10.1016/j.jprot.2014.11.006.Suche in Google Scholar PubMed

Owings, J.P., Kuiper, E.G., Prezioso, S.M., Meisner, J., Varga, J.J., Zelinskaya, N., Dammer, E.B., Duong, D.M., Seyfried, N.T., Alberti, S., et al.. (2016). Pseudomonas aeruginosa EftM is a thermoregulated methyltransferase. J. Biol. Chem. 291: 3280–3290, https://doi.org/10.1074/jbc.m115.706853.Suche in Google Scholar

Ozer, A., Altuntas, C.Z., Izgi, K., Bicer, F., Hultgren, S.J., Liu, G., and Daneshgari, F. (2015). Advanced glycation end products facilitate bacterial adherence in urinary tract infection in diabetic mice. Pathog. Dis. 73: ftu004, https://doi.org/10.1093/femspd/ftu004.Suche in Google Scholar PubMed PubMed Central

Palanichelvam, K., Oger, P., Clough, S.J., Cha, C., Bent, A.F., and Farrand, S.K. (2000). A second T-region of the soybean-supervirulent chrysopine-type Ti plasmid pTiChry5, and construction of a fully disarmed vir helper plasmid. Mol. Plant Microbe Interact. 13: 1081–1091, https://doi.org/10.1094/mpmi.2000.13.10.1081.Suche in Google Scholar PubMed

Park, J.H., Wolff, E.C., Folk, J.E., and Park, M.H. (2003). Reversal of the deoxyhypusine synthesis reaction. Generation of spermidine or homospermidine from deoxyhypusine by deoxyhypusine synthase. J. Biol. Chem. 278: 32683–32691, https://doi.org/10.1074/jbc.m304247200.Suche in Google Scholar PubMed

Park, M.H., Nishimura, K., Zanelli, C.F., and Valentini, S.R. (2010). Functional significance of eIF-5A and its hypusine modification in eukaryotes. Amino Acids 38: 491–500, https://doi.org/10.1007/s00726-009-0408-7.Suche in Google Scholar PubMed PubMed Central

Park, J.H., Dias, C.A.O., Lee, S.B., Valentini, S.R., Sokabe, M., Fraser, C.S., and Park, M.H. (2011). Production of active recombinant eIF-5A: reconstitution in E. coli of eukaryotic hypusine modification of eIF-5A by its coexpression with modifying enzymes. Protein Eng. Des. Sel. 24: 301–309, https://doi.org/10.1093/protein/gzq110.Suche in Google Scholar PubMed PubMed Central

Parks, A.R. and Escalante-Semerena, J.C. (2020). Modulation of the bacterial CobB sirtuin deacylase activity by N-terminal acetylation. Proc. Natl. Acad. Sci. U.S.A. 117: 15895–15901, https://doi.org/10.1073/pnas.2005296117.Suche in Google Scholar PubMed PubMed Central

Patel, P.H., Costa-Mattioli, M., Schulze, K.L., and Bellen, H.J. (2009). The Drosophila deoxyhypusine hydroxylase homologue nero and its target elF-5A are required for cell growth and the regulation of autophagy. J. Cell Biol. 185: 1181–1194, https://doi.org/10.1083/jcb.200904161.Suche in Google Scholar PubMed PubMed Central

Pavlov, M.Y., Watts, R.E., Tan, Z., Cornish, V.W., Ehrenberg, M., and Forster, A.C. (2009). Slow peptide bond formation by proline and other N-alkylamino acids in translation. Proc. Natl. Acad. Sci. U.S.A. 106: 50–54, https://doi.org/10.1073/pnas.0809211106.Suche in Google Scholar PubMed PubMed Central

Pearce, M.J., Mintseris, J., Ferreyra, J., Gygi, S.P., and Darwin, K.H. (2008). Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322: 1104–1107, https://doi.org/10.1126/science.1163885.Suche in Google Scholar PubMed PubMed Central

Pearson, J.S., Giogha, C., Ong, S.Y., Kennedy, C.L., Kelly, M., Robinson, K.S., Lung, T.W., Mansell, A., Riedmaier, P., Oates, C.V., et al.. (2013). A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature 501: 247–251, https://doi.org/10.1038/nature12524.Suche in Google Scholar PubMed PubMed Central

Peil, L., Starosta, A.L., Virumae, K., Atkinson, G.C., Tenson, T., Remme, J., and Wilson, D.N. (2012). Lys34 of translation elongation factor EF-P is hydroxylated by YfcM. Nat. Chem. Biol. 8: 695–697, https://doi.org/10.1038/nchembio.1001.Suche in Google Scholar PubMed

Peil, L., Starosta, A.L., Lassak, J., Atkinson, G.C., Virumäe, K., Spitzer, M., Tenson, T., Jung, K., Remme, J., and Wilson, D.N. (2013). Distinct X/PP/X sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P. Proc. Natl. Acad. Sci. U.S.A. 110: 15265–15270, https://doi.org/10.1073/pnas.1310642110.Suche in Google Scholar PubMed PubMed Central

Pęksa, A., Miedzianka, J., Nemś, A., and Rytel, E. (2021). The free-amino-acid content in six potatoes cultivars through storage. Molecules 26: 1322, https://doi.org/10.3390/molecules26051322.Suche in Google Scholar PubMed PubMed Central

Peng, C., Lu, Z., Xie, Z., Cheng, Z., Chen, Y., Tan, M., Luo, H., Zhang, Y., He, W., Yang, K., et al.. (2011). The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteomics 10: M111.012658, https://doi.org/10.1074/mcp.M111.012658.Suche in Google Scholar PubMed PubMed Central

Penndorf, I., Biedermann, D., Maurer, S.V., and Henle, T. (2007). Studies on N-terminal glycation of peptides in hypoallergenic infant formulas: quantification of Nα-(2-furoylmethyl) amino acids. J. Agric. Food Chem. 55: 723–7, https://doi.org/10.1021/jf061821b. 17263466.Suche in Google Scholar PubMed

Pfab, M., Kielkowski, P., Krafczyk, R., Volkwein, W., Sieber, S.A., Lassak, J., and Jung, K. (2021). Synthetic post-translational modifications of elongation factor P using the ligase EpmA. FEBS J. 288: 663–677, https://doi.org/10.1111/febs.15346.Suche in Google Scholar PubMed

Phillips, D.M. (1963). The presence of acetyl groups of histones. Biochem. J. 87: 258–263, https://doi.org/10.1042/bj0870258.Suche in Google Scholar PubMed PubMed Central

Pickart, C.M. (2001). Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70: 503–533, https://doi.org/10.1146/annurev.biochem.70.1.503.Suche in Google Scholar PubMed

Pickart, C.M. and Fushman, D. (2004). Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. 8: 610–616, https://doi.org/10.1016/j.cbpa.2004.09.009.Suche in Google Scholar

Pinheiro, B., Scheidler, C.M., Kielkowski, P., Schmid, M., Forne, I., Ye, S., Reiling, N., Takano, E., Imhof, A., Sieber, S.A., et al.. (2020). Structure and function of an elongation factor P subfamily in Actinobacteria. Cell Rep. 30: 4332–4342.e4335, https://doi.org/10.1016/j.celrep.2020.03.009.Suche in Google Scholar

Prüss, B.M. and Wolfe, A.J. (1994). Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Mol. Microbiol. 12: 973–984.10.1111/j.1365-2958.1994.tb01085.xSuche in Google Scholar

Qi, F., Motz, M., Jung, K., Lassak, J., and Frishman, D. (2018). Evolutionary analysis of polyproline motifs in Escherichia coli reveals their regulatory role in translation. PLoS Comput. Biol. 14: e1005987, https://doi.org/10.1371/journal.pcbi.1005987.Suche in Google Scholar

Qian, L., Nie, L., Chen, M., Liu, P., Zhu, J., Zhai, L., Tao, S.C., Cheng, Z., Zhao, Y., and Tan, M. (2016). Global profiling of protein lysine malonylation in Escherichia coli reveals its role in energy metabolism. J. Proteome Res. 15: 2060–2071, https://doi.org/10.1021/acs.jproteome.6b00264.Suche in Google Scholar

Qu, W., Nie, C., Zhao, J., Ou, X., Zhang, Y., Yang, S., Bai, X., Wang, Y., Wang, J., and Li, J. (2018). Microbiome-metabolomics analysis of the impacts of long-term dietary advanced-glycation-end-product consumption on C57BL/6 mouse fecal microbiota and metabolites. J. Agric. Food Chem. 66: 8864–8875, https://doi.org/10.1021/acs.jafc.8b01466.Suche in Google Scholar

Rahbar, S. (1968). An abnormal hemoglobin in red cells of diabetics. Clin. Chim. Acta 22: 296–298, https://doi.org/10.1016/0009-8981(68)90372-0.Suche in Google Scholar

Rajkovic, A., Hummels, K.R., Witzky, A., Erickson, S., Gafken, P.R., Whitelegge, J.P., Faull, K.F., Kearns, D.B., and Ibba, M. (2016). Translation control of swarming proficiency in Bacillus subtilis by 5-amino-pentanolylated elongation factor P. J. Biol. Chem. 291: 10976–10985, https://doi.org/10.1074/jbc.m115.712091.Suche in Google Scholar PubMed PubMed Central

Ramponi, G., Manao, G., and Camici, G. (1975). Nonenzymatic acetylation of histones with acetyl phosphate and acetyl adenylate. Biochemistry 14: 2681–2685, https://doi.org/10.1021/bi00683a018.Suche in Google Scholar PubMed

Rappas, M., Bose, D., and Zhang, X. (2007). Bacterial enhancer-binding proteins: unlocking σ54-dependent gene transcription. Curr. Opin. Struct. Biol. 17: 110–116, https://doi.org/10.1016/j.sbi.2006.11.002.Suche in Google Scholar PubMed

Regev, O., Roth, Z., Korman, M., Khalaila, I., and Gur, E. (2015). A kinetic model for the prevalence of mono- over poly-pupylation. FEBS J. 282: 4176–4186, https://doi.org/10.1111/febs.13413.Suche in Google Scholar

Resch, M., Schiltz, E., Titgemeyer, F., and Muller, Y.A. (2010). Insight into the induction mechanism of the GntR/HutC bacterial transcription regulator YvoA. Nucleic Acids Res. 38: 2485–2497, https://doi.org/10.1093/nar/gkp1191.Suche in Google Scholar

Resh, M.D. (2016). Fatty acylation of proteins: the long and the short of it. Prog. Lipid Res. 63: 120–131, https://doi.org/10.1016/j.plipres.2016.05.002.Suche in Google Scholar

Rhein, V.F., Carroll, J., He, J., Ding, S., Fearnley, I.M., and Walker, J.E. (2014). Human METTL20 methylates lysine residues adjacent to the recognition loop of the electron transfer flavoprotein in mitochondria. J. Biol. Chem. 289: 24640–24651, https://doi.org/10.1074/jbc.m114.580464.Suche in Google Scholar

Ribeiro, R.T., Macedo, M.P., and Raposo, J.F. (2016). HbA1c, fructosamine, and glycated albumin in the detection of dysglycaemic conditions. Curr. Diabetes Rev. 12: 14–19, https://doi.org/10.2174/1573399811666150701143112.Suche in Google Scholar

Rigali, S., Derouaux, A., Giannotta, F., and Dusart, J. (2002). Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J. Biol. Chem. 277: 12507–12515, https://doi.org/10.1074/jbc.m110968200.Suche in Google Scholar

Rodionov, A.V., Eremeeva, M.E., and Balayeva, N.M. (1991). Isolation and partial characterization of the M(r) 100 kD protein from Rickettsia prowazekii strains of different virulence. Acta Virol. 35: 557–565.Suche in Google Scholar

Rose, I.A., Grunbergmanago, M., Korey, S.R., and Ochoa, S. (1954). Enzymatic phosphorylation of acetate. J. Biol. Chem. 211: 737–756, https://doi.org/10.1016/s0021-9258(18)71161-7.Suche in Google Scholar

Rothe, F.M., Bahr, T., Stülke, J., Rak, B., and Görke, B. (2012). Activation of Escherichia coli antiterminator BglG requires its phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 109: 15906–15911, https://doi.org/10.1073/pnas.1210443109.Suche in Google Scholar PubMed PubMed Central

Roy, H., Zou, S.B., Bullwinkle, T.J., Wolfe, B.S., Gilreath, M.S., Forsyth, C.J., Navarre, W.W., and Ibba, M. (2011). The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-β-lysine. Nat. Chem. Biol. 7: 667–669, https://doi.org/10.1038/nchembio.632.Suche in Google Scholar PubMed PubMed Central

Sabag-Daigle, A., Sengupta, A., Blunk, H.M., Biswas, P.K., Cron, M.C., Bogard, A.J., Behrman, E.J., Gopalan, V., and Ahmer, B.M.M. (2017). Salmonella FraE, an asparaginase homolog, contributes to fructose-asparagine but not asparagine utilization. J. Bacteriol. 199, https://doi.org/10.1128/JB.00330-17.Suche in Google Scholar PubMed PubMed Central

Sabag-Daigle, A., Wu, J., Borton, M.A., Sengupta, A., Gopalan, V., Wrighton, K.C., Wysocki, V.H., Ahmer, B.M.M., and Atomi, H. (2018). Identification of bacterial species that can utilize fructose-asparagine. Appl. Environ. Microbiol. 84: e01957–01917, https://doi.org/10.1128/AEM.01957-17.Suche in Google Scholar

Sakaguchi-Mikami, A., Kameya, M., Ferri, S., Tsugawa, W., and Sode, K. (2013). Cloning and characterization of fructosamine-6-kinase from Arthrobacter aurescens. Appl. Biochem. Biotechnol. 170: 710–717, https://doi.org/10.1007/s12010-013-0229-8.Suche in Google Scholar

Salah Ud-Din, A.I.M., Tikhomirova, A., and Roujeinikova, A. (2016). Structure and functional diversity of GCN5-related N-acetyltransferases (GNAT). Int. J. Mol. Sci. 17, https://doi.org/10.3390/ijms17071018. 27367672.Suche in Google Scholar PubMed

Sanders, B.D., Jackson, B., and Marmorstein, R. (2010). Structural basis for sirtuin function: what we know and what we don’t. Biochim. Biophys. Acta Protein Proteonomics 1804: 1604–1616, https://doi.org/10.1016/j.bbapap.2009.09.009.Suche in Google Scholar

Satchell, K.J. (2007). MARTX, multifunctional autoprocessing repeats-in-toxin toxins. Infect. Immun. 75: 5079–5084, https://doi.org/10.1128/iai.00525-07.Suche in Google Scholar

Schilling, B., Christensen, D., Davis, R., Sahu, A.K., Hu, L.I., Walker-Peddakotla, A., Sorensen, D.J., Zemaitaitis, B., Gibson, B.W., and Wolfe, A.J. (2015). Protein acetylation dynamics in response to carbon overflow in Escherichia coli. Mol. Microbiol. 98: 847–863, https://doi.org/10.1111/mmi.13161.Suche in Google Scholar

Schilling, B., Basisty, N., Christensen, D.G., Sorensen, D., Orr, J.S., Wolfe, A.J., and Rao, C.V. (2019). Global lysine acetylation in Escherichia coli results from growth conditions that favor acetate fermentation. J. Bacteriol. 201, https://doi.org/10.1128/JB.00768-18.Suche in Google Scholar

Schleicher, E. and Wieland, O.H. (1986). Kinetic analysis of glycation as a tool for assessing the half-life of proteins. Biochim. Biophys. Acta 884: 199–205, https://doi.org/10.1016/0304-4165(86)90244-8.Suche in Google Scholar

Schmidt, C., Becker, T., Heuer, A., Braunger, K., Shanmuganathan, V., Pech, M., Berninghausen, O., Wilson, D.N., and Beckmann, R. (2016). Structure of the hypusinylated eukaryotic translation factor eIF-5A bound to the ribosome. Nucleic Acids Res. 44: 1944–1951, https://doi.org/10.1093/nar/gkv1517.Suche in Google Scholar PubMed PubMed Central

Schnell, J.D. and Hicke, L. (2003). Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J. Biol. Chem. 278: 35857–35860, https://doi.org/10.1074/jbc.r300018200.Suche in Google Scholar PubMed

Schubert, H.L., Blumenthal, R.M., and Cheng, X.D. (2003). Many paths to methyltransfer: a chronicle of convergence. Trends Biochem. Sci. 28: 329–335, https://doi.org/10.1016/s0968-0004(03)00090-2.Suche in Google Scholar

Schulman, B.A. and Harper, J.W. (2009). Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 10: 319–331, https://doi.org/10.1038/nrm2673.Suche in Google Scholar

Serrano, G.C., Rezende e Silva Figueira, T., Kiyota, E., Zanata, N., and Arruda, P. (2012). Lysine degradation through the saccharopine pathway in bacteria: LKR and SDH in bacteria and its relationship to the plant and animal enzymes. FEBS Lett. 586: 905–911, https://doi.org/10.1016/j.febslet.2012.02.023.Suche in Google Scholar

Servillo, L., Giovane, A., Cautela, D., Castaldo, D., and Balestrieri, M.L. (2014). Where does Nε-trimethyllysine for the carnitine biosynthesis in mammals come from? PLoS One 9: e84589, https://doi.org/10.1371/journal.pone.0084589.Suche in Google Scholar

Servillo, L., D’Onofrio, N., Giovane, A., Casale, R., Cautela, D., Castaldo, D., Iannaccone, F., Neglia, G., Campanile, G., and Balestrieri, M.L. (2018). Ruminant meat and milk contain δ-valerobetaine, another precursor of trimethylamine N-oxide (TMAO) like γ-butyrobetaine. Food Chem. 260: 193–199, https://doi.org/10.1016/j.foodchem.2018.03.114.Suche in Google Scholar

Shaw, K.J., Rather, P.N., Hare, R.S., and Miller, G.H. (1993). Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol. Rev. 57: 138–163, https://doi.org/10.1128/mr.57.1.138-163.1993.Suche in Google Scholar

Shiba, T., Mizote, H., Kaneko, T., Nakajima, T., and Kakimoto, Y. (1971). Hypusine, a new amino acid occurring in bovine brain. Isolation and structural determination. Biochim. Biophys. Acta 244: 523–531, https://doi.org/10.1016/0304-4165(71)90069-9.Suche in Google Scholar

Sievert, H., Pallmann, N., Miller, K.K., Hermans-Borgmeyer, I., Venz, S., Sendoel, A., Preukschas, M., Schweizer, M., Boettcher, S., Janiesch, P.C., et al.. (2014). A novel mouse model for inhibition of DOHH-mediated hypusine modification reveals a crucial function in embryonic development, proliferation and oncogenic transformation. Dis. Model Mech. 7: 963–976, https://doi.org/10.1242/dmm.014449.Suche in Google Scholar PubMed PubMed Central

Sillner, N., Walker, A., Hemmler, D., Bazanella, M., Heinzmann, S.S., Haller, D., and Schmitt-Kopplin, P. (2019). Milk-derived Amadori products in feces of formula-fed Infants. J. Agric. Food Chem. 67: 8061–8069, https://doi.org/10.1021/acs.jafc.9b01889.Suche in Google Scholar PubMed

Smith, B.C., Hallows, W.C., and Denu, J.M. (2008). Mechanisms and molecular probes of sirtuins. Chem. Biol. 15: 1002–1013, https://doi.org/10.1016/j.chembiol.2008.09.009.Suche in Google Scholar PubMed PubMed Central

Smuda, M., Voigt, M., and Glomb, M.A. (2010). Degradation of 1-deoxy-d-erythro-hexo-2,3-diulose in the presence of lysine leads to formation of carboxylic acid amides. J. Agric. Food Chem. 58: 6458–6464, https://doi.org/10.1021/jf100334r.Suche in Google Scholar PubMed

Smuda, M., Henning, C., Raghavan, C.T., Johar, K., Vasavada, A.R., Nagaraj, R.H., and Glomb, M.A. (2015). Comprehensive analysis of maillard protein modifications in human lenses: effect of age and cataract. Biochemistry 54: 2500–2507, https://doi.org/10.1021/bi5013194.Suche in Google Scholar PubMed PubMed Central

Soppa, J. (2010). Protein acetylation in archaea, bacteria, and eukaryotes. Archaea 2010: 820681, https://doi.org/10.1155/2010/820681. 20885971.Suche in Google Scholar PubMed PubMed Central

Spinck, M., Neumann-Staubitz, P., Ecke, M., Gasper, R., and Neumann, H. (2020). Evolved, selective erasers of distinct lysine acylations. Angew. Chem. Int. Ed. 59: 11142–11149, https://doi.org/10.1002/anie.202002899.Suche in Google Scholar PubMed PubMed Central

Starai, V.J. and Escalante-Semerena, J.C. (2004). Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica. J. Mol. Biol. 340: 1005–1012, https://doi.org/10.1016/j.jmb.2004.05.010.Suche in Google Scholar PubMed

Starai, V.J., Celic, I., Cole, R.N., Boeke, J.D., and Escalante-Semerena, J.C. (2002). Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298: 2390–2392, https://doi.org/10.1126/science.1077650.Suche in Google Scholar PubMed

Starosta, A.L., Lassak, J., Peil, L., Atkinson, G.C., Virumae, K., Tenson, T., Remme, J., Jung, K., and Wilson, D.N. (2014a). Translational stalling at polyproline stretches is modulated by the sequence context upstream of the stall site. Nucleic Acids Res. 42: 10711–10719, https://doi.org/10.1093/nar/gku768.Suche in Google Scholar PubMed PubMed Central

Starosta, A.L., Lassak, J., Peil, L., Atkinson, G.C., Woolstenhulme, C.J., Virumae, K., Buskirk, A., Tenson, T., Remme, J., Jung, K., et al.. (2014b). A conserved proline triplet in Val-tRNA synthetase and the origin of elongation factor P. Cell Rep. 9: 476–483, https://doi.org/10.1016/j.celrep.2014.09.008.Suche in Google Scholar PubMed PubMed Central

Stec, B. (2012). Structural mechanism of RuBisCO activation by carbamylation of the active site lysine. Proc. Natl. Acad. Sci. U.S.A. 109: 18785–18790, https://doi.org/10.1073/pnas.1210754109.Suche in Google Scholar PubMed PubMed Central

Striebel, F., Imkamp, F., Sutter, M., Steiner, M., Mamedov, A., and Weber-Ban, E. (2009). Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat. Struct. Mol. Biol. 16: 647–651, https://doi.org/10.1038/nsmb.1597.Suche in Google Scholar PubMed

Striebel, F., Imkamp, F., Özcelik, D., Weber-Ban, E. (2014). Pupylation as a signal for proteasomal degradation in bacteria. Biochim Biophys Acta 1843: 103–113, https://doi.org/10.1016/j.bbamcr.2013.03.022. 23557784.Suche in Google Scholar PubMed

Sun, M., Xu, J., Wu, Z., Zhai, L., Liu, C., Cheng, Z., Xu, G., Tao, S., Ye, B.C., Zhao, Y., et al.. (2016a). Characterization of protein lysine propionylation in Escherichia coli: global profiling, dynamic change, and enzymatic regulation. J. Proteome Res. 15: 4696–4708, https://doi.org/10.1021/acs.jproteome.6b00798.Suche in Google Scholar PubMed

Sun, M.L., Guo, H.S., Lu, G.L., Gu, J., Wang, X.D., Zhang, X.E., and Deng, J.Y. (2016b). Lysine acetylation regulates the activity of Escherichia coli S-adenosylmethionine synthase. Acta Biochim. Biophys. Sin. 48: 723–731, https://doi.org/10.1093/abbs/gmw066.Suche in Google Scholar PubMed

Sun, C.-F., Xu, W.-F., Zhao, Q.-W., Luo, S., Chen, X.-A., Li, Y.-Q., and Mao, X.-M. (2020). Crotonylation of key metabolic enzymes regulates carbon catabolite repression in Streptomyces roseosporus. Commun. Biol. 3: 192, https://doi.org/10.1038/s42003-020-0924-2.Suche in Google Scholar PubMed PubMed Central

Sutter, M., Striebel, F., Damberger, F.F., Allain, F.H.T., and Weber-Ban, E. (2009). A distinct structural region of the prokaryotic ubiquitin-like protein (Pup) is recognized by the N-terminal domain of the proteasomal ATPase Mpa. FEBS Lett. 583: 3151–3157, https://doi.org/10.1016/j.febslet.2009.09.020.Suche in Google Scholar PubMed

Szwergold, B.S., Howell, S., and Beisswenger, P.J. (2001). Human fructosamine-3-kinase: purification, sequencing, substrate specificity, and evidence of activity in vivo. Diabetes 50: 2139–2147, https://doi.org/10.2337/diabetes.50.9.2139.Suche in Google Scholar PubMed

Tan, M.J., Luo, H., Lee, S., Jin, F.L., Yang, J.S., Montellier, E., Buchou, T., Cheng, Z.Y., Rousseaux, S., Rajagopal, N., et al.. (2011). Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146: 1015–1027, https://doi.org/10.1016/j.cell.2011.08.008.Suche in Google Scholar PubMed PubMed Central

Tan, M.J., Peng, C., Anderson, K.A., Chhoy, P., Xie, Z.Y., Dai, L.Z., Park, J., Chen, Y., Huang, H., Zhang, Y., et al.. (2014). Lysine glutarylation is a protein post-translational modification regulated by SIRT5. Cell Metabol. 19: 605–617, https://doi.org/10.1016/j.cmet.2014.03.014.Suche in Google Scholar PubMed PubMed Central

Tanner, D.R., Cariello, D.A., Woolstenhulme, C.J., Broadbent, M.A., and Buskirk, A.R. (2009). Genetic identification of nascent peptides that induce ribosome stalling. J. Biol. Chem. 284: 34809–34818, https://doi.org/10.1074/jbc.m109.039040.Suche in Google Scholar

Tessier, F.J. and Niquet, C. (2007). The metabolic, nutritional and toxicological consequences of ingested dietary Maillard reaction products: a literature review. J. Soc. Biol. 201: 199–207, https://doi.org/10.1051/jbio:2007025.10.1051/jbio:2007025Suche in Google Scholar

Thompson, M.G., Blake-Hedges, J.M., Cruz-Morales, P., Barajas, J.F., Curran, S.C., Eiben, C.B., Harris, N.C., Benites, V.T., Gin, J.W., Sharpless, W.A., et al.. (2019). Massively parallel fitness profiling reveals multiple novel enzymes in Pseudomonas putida lysine metabolism. mBio 10: e02577–e02518, https://doi.org/10.1128/mBio.02577-18.Suche in Google Scholar PubMed PubMed Central

Tong, L. and Denu, J.M. (2010). Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose. Biochim. Biophys. Acta 1804: 1617–1625, https://doi.org/10.1016/j.bbapap.2010.02.007.Suche in Google Scholar PubMed PubMed Central

Troise, A.D., Dathan, N.A., Fiore, A., Roviello, G., Di Fiore, A., Caira, S., Cuollo, M., De Simone, G., Fogliano, V., and Monti, S.M. (2014). Faox enzymes inhibited Maillard reaction development during storage both in protein glucose model system and low lactose UHT milk. Amino Acids 46: 279–288, https://doi.org/10.1007/s00726-013-1497-x.Suche in Google Scholar PubMed

Troise, A.D., Buonanno, M., Fiore, A., Monti, S.M., and Fogliano, V. (2016). Evolution of protein bound Maillard reaction end-products and free Amadori compounds in low lactose milk in presence of fructosamine oxidase I. Food Chem. 212: 722–729, https://doi.org/10.1016/j.foodchem.2016.06.037.Suche in Google Scholar PubMed

Tschiersch, B., Hofmann, A., Krauss, V., Dorn, R., Korge, G., and Reuter, G. (1994). The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 13: 3822–3831, https://doi.org/10.1002/j.1460-2075.1994.tb06693.x.Suche in Google Scholar PubMed PubMed Central

Tucker, A.C. and Escalante-Semerena, J.C. (2010). Biologically active isoforms of CobB sirtuin deacetylase in Salmonella enterica and Erwinia amylovora. J. Bacteriol. 192: 6200–6208, https://doi.org/10.1128/jb.00874-10.Suche in Google Scholar PubMed PubMed Central

Ude, S., Lassak, J., Starosta, A.L., Kraxenberger, T., Wilson, D.N., and Jung, K. (2013). Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 339: 82–85, https://doi.org/10.1126/science.1228985.Suche in Google Scholar PubMed

Utrera, M. and Estévez, M. (2013). Oxidative damage to poultry, pork, and beef during frozen storage through the analysis of novel protein oxidation markers. J. Agric. Food Chem. 61: 7987–7993, https://doi.org/10.1021/jf402220q.Suche in Google Scholar PubMed

van der Lugt, T., Venema, K., van Leeuwen, S., Vrolijk, M.F., Opperhuizen, A., and Bast, A. (2020). Gastrointestinal digestion of dietary advanced glycation endproducts using an in vitro model of the gastrointestinal tract (TIM-1). Food Funct. 11: 6297–6307, https://doi.org/10.1039/d0fo00450b.Suche in Google Scholar PubMed

Van Noort, J.M., Kraal, B., Sinjorgo, K.M., Persoon, N.L., Johanns, E.S., and Bosch, L. (1986). Methylation in vivo of elongation factor EF-Tu at lysine-56 decreases the rate of tRNA-dependent GTP hydrolysis. Eur. J. Biochem. 160: 557–561, https://doi.org/10.1111/j.1432-1033.1986.tb10074.x.Suche in Google Scholar PubMed

van Tilbeurgh, H. and Declerck, N. (2001). Structural insights into the regulation of bacterial signalling proteins containing PRDs. Curr. Opin. Struct. Biol. 11: 685–693, https://doi.org/10.1016/s0959-440x(01)00267-6.Suche in Google Scholar

van Wijk, S.J. and Timmers, H.T. (2010). The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J. 24: 981–993, https://doi.org/10.1096/fj.09-136259.Suche in Google Scholar

Vanet, A., Plumbridge, J.A., Guérin, M.F., and Alix, J.H. (1994). Ribosomal protein methylation in Escherichia coli: the gene prmA, encoding the ribosomal protein L11 methyltransferase, is dispensable. Mol. Microbiol. 14: 947–958, https://doi.org/10.1111/j.1365-2958.1994.tb01330.x.Suche in Google Scholar

Vanholder, R., De Smet, R., Glorieux, G., Argilés, A., Baurmeister, U., Brunet, P., Clark, W., Cohen, G., De Deyn, P.P., Deppisch, R., et al.. (2003). Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 63: 1934–1943, https://doi.org/10.1046/j.1523-1755.2003.00924.x.Suche in Google Scholar

Varenne, S., Buc, J., Lloubes, R., and Lazdunski, C. (1984). Translation is a non-uniform process – effect of transfer-RNA availability on the rate of elongation of nascent polypeptide-chains. J. Mol. Biol. 180: 549–576, https://doi.org/10.1016/0022-2836(84)90027-5.Suche in Google Scholar

Varland, S., Osberg, C., and Arnesen, T. (2015). N-terminal modifications of cellular proteins: the enzymes involved, their substrate specificities and biological effects. Proteomics 15: 2385–2401, https://doi.org/10.1002/pmic.201400619.Suche in Google Scholar PubMed PubMed Central

Verzijl, N., DeGroot, J., Oldehinkel, E., Bank, R.A., Thorpe, S.R., Baynes, J.W., Bayliss, M.T., Bijlsma, J.W., Lafeber, F.P., and Tekoppele, J.M. (2000). Age-related accumulation of Maillard reaction products in human articular cartilage collagen. Biochem. J. 350: 381–387, https://doi.org/10.1042/bj3500381.Suche in Google Scholar

Vetting, M.W., de Carvalho, L.P.S., Yu, M., Hegde, S.S., Magnet, S., Roderick, S.L., and Blanchard, J.S. (2005). Structure and functions of the GNAT superfamily of acetyltransferases. Arch. Biochem. Biophys. 433: 212–226, https://doi.org/10.1016/j.abb.2004.09.003.Suche in Google Scholar PubMed

Vladimirov, I.A., Matveeva, T.V., and Lutova, L.A. (2015). Opine biosynthesis and catabolism genes of Agrobacterium tumefaciens and Agrobacterium rhizogenes. Genetika 51: 137–146, https://doi.org/10.1134/s1022795415020167.Suche in Google Scholar

Volkwein, W., Maier, C., Krafczyk, R., Jung, K., and Lassak, J. (2017). A versatile toolbox for the control of protein levels using Nε-acetyl-l-lysine dependent amber suppression. ACS Synth. Biol. 6: 1892–1902, https://doi.org/10.1021/acssynbio.7b00048.Suche in Google Scholar PubMed

Volkwein, W., Krafczyk, R., Jagtap, P.K.A., Parr, M., Mankina, E., Macosek, J., Guo, Z., Furst, M., Pfab, M., Frishman, D., et al.. (2019). Switching the post-translational modification of translation elongation factor EF-P. Front. Microbiol. 10: 1148, https://doi.org/10.3389/fmicb.2019.01148.Suche in Google Scholar PubMed PubMed Central

Wagner, G.R. and Payne, R.M. (2013). Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J. Biol. Chem. 288: 29036–29045, https://doi.org/10.1074/jbc.m113.486753.Suche in Google Scholar

Wagner, G.R., Bhatt, D.P., O’Connell, T.M., Thompson, J.W., Dubois, L.G., Backos, D.S., Yang, H., Mitchell, G.A., Ilkayeva, O.R., Stevens, R.D., et al.. (2017). A class of reactive acyl-CoA species reveals the non-enzymatic origins of protein acylation. Cell Metabol. 25: 823–837.e828, https://doi.org/10.1016/j.cmet.2017.03.006.Suche in Google Scholar PubMed PubMed Central

Walsh, C.T., Garneau-Tsodikova, S., and Gatto, G.J.Jr. (2005). Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed. 44: 7342–7372, https://doi.org/10.1002/anie.200501023.Suche in Google Scholar PubMed

Wandersman, C. and Delepelaire, P. (1990). TolC, an Escherichia coli outer membrane protein required for hemolysin secretion. Proc. Natl. Acad. Sci. U.S.A. 87: 4776–4780, https://doi.org/10.1073/pnas.87.12.4776.Suche in Google Scholar PubMed PubMed Central

Wang, Y., Xu, A., Knight, C., Xu, L.Y., and Cooper, G.J. (2002). Hydroxylation and glycosylation of the four conserved lysine residues in the collagenous domain of adiponectin. Potential role in the modulation of its insulin-sensitizing activity. J. Biol. Chem. 277: 19521–19529, https://doi.org/10.1074/jbc.m200601200.Suche in Google Scholar

Wang, Q.J., Zhang, Y.K., Yang, C., Xiong, H., Lin, Y., Yao, J., Li, H., Xie, L., Zhao, W., Yao, Y.F., et al.. (2010). Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327: 1004–1007, https://doi.org/10.1126/science.1179687.Suche in Google Scholar PubMed PubMed Central

Wang, Z.A., Kurra, Y., Wang, X., Zeng, Y., Lee, Y.-J., Sharma, V., Lin, H., Dai, S.Y., and Liu, W.R. (2017). A versatile approach for site-specific lysine acylation in proteins. Angew. Chem. Int. Ed. 56: 1643–1647, https://doi.org/10.1002/anie.201611415.Suche in Google Scholar PubMed PubMed Central

Weinert, B.T., Iesmantavicius, V., Wagner, S.A., Scholz, C., Gummesson, B., Beli, P., Nystrom, T., and Choudhary, C. (2013a). Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli. Mol. Cell. 51: 265–272, https://doi.org/10.1016/j.molcel.2013.06.003.Suche in Google Scholar PubMed

Weinert, B.T., Scholz, C., Wagner, S.A., Iesmantavicius, V., Su, D., Daniel, J.A., and Choudhary, C. (2013b). Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep. 4: 842–851, https://doi.org/10.1016/j.celrep.2013.07.024.Suche in Google Scholar PubMed

Welch, R.A. (1991). Pore-forming cytolysins of gram-negative bacteria. Mol. Microbiol. 5: 521–528, https://doi.org/10.1111/j.1365-2958.1991.tb00723.x.Suche in Google Scholar PubMed

Welch, R.A. (2001). RTX toxin structure and function: a story of numerous anomalies and few analogies in toxin biology. Curr. Top. Microbiol. Immunol. 257: 85–111, https://doi.org/10.1007/978-3-642-56508-3_5.Suche in Google Scholar PubMed

Whetstine, J.R. (2010). Chapter 287 – Histone methylation: chemically inert but chromatin dynamic. In: Bradshaw, R. and Dennis, E. (Eds.). Handbook of cell signaling, 2nd ed. Academic Press, San Diego, pp. 2389–2397.10.1016/B978-0-12-374145-5.00287-4Suche in Google Scholar

Wiame, E. and Van Schaftingen, E. (2004). Fructoselysine 3-epimerase, an enzyme involved in the metabolism of the unusual Amadori compound psicoselysine in Escherichia coli. Biochem. J. 378: 1047–1052, https://doi.org/10.1042/bj20031527.Suche in Google Scholar PubMed PubMed Central

Wiame, E., Delpierre, G., Collard, F., and Van Schaftingen, E. (2002). Identification of a pathway for the utilization of the Amadori product fructoselysine in Escherichia coli. J. Biol. Chem. 277: 42523–42529, https://doi.org/10.1074/jbc.m200863200.Suche in Google Scholar

Wiame, E., Duquenne, A., Delpierre, G., and Van Schaftingen, E. (2004). Identification of enzymes acting on α-glycated amino acids in Bacillus subtilis. FEBS Lett. 577: 469–472, https://doi.org/10.1016/j.febslet.2004.10.049.Suche in Google Scholar PubMed

Wiame, E., Lamosa, P., Santos, H., and Van Schaftingen, E. (2005). Identification of glucoselysine-6-phosphate deglycase, an enzyme involved in the metabolism of the fructation product glucoselysine. Biochem. J. 392: 263–269, https://doi.org/10.1042/bj20051183.Suche in Google Scholar

Wilkinson, K.D. (1997). Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J. 11: 1245–1256, https://doi.org/10.1096/fasebj.11.14.9409543.Suche in Google Scholar PubMed

Wimpenny, J.W. and Firth, A. (1972). Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen. J. Bacteriol. 11: 24, https://doi.org/10.1128/jb.111.1.24-32.1972.Suche in Google Scholar PubMed PubMed Central

Wisniewski, J.R., Zougman, A., and Mann, M. (2008). Nε-formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function. Nucleic Acids Res. 36: 570–577, https://doi.org/10.1093/nar/gkm1057.Suche in Google Scholar PubMed PubMed Central

Wittmann, R. and Eichner, K. (1989). Nachweis von Maillard-Produkten in Malzen, Bieren und Braucouleuren. Z. Lebensm. Unters. Forsch. 188: 212–220, https://doi.org/10.1007/bf02112877.Suche in Google Scholar

Witzky, A., Hummels, K.R., Tollerson, R., Rajkovic, A., Jones, L.A., Kearns, D.B., Ibba, M., Gottesman, S., Hayes, C., and Keiler, K. (2018). EF-P posttranslational modification has variable impact on polyproline translation in Bacillus subtilis. mBio 9: e00306–00318, https://doi.org/10.1128/mBio.00306-18.Suche in Google Scholar

Wolf, A.R., Wesener, D.A., Cheng, J., Houston-Ludlam, A.N., Beller, Z.W., Hibberd, M.C., Giannone, R.J., Peters, S.L., Hettich, R.L., Leyn, S.A., et al.. (2019). Bioremediation of a common product of food processing by a human gut bacterium. Cell Host Microbe 26: 463–477.e468, https://doi.org/10.1016/j.chom.2019.09.001.Suche in Google Scholar

Wolfe, A.J. (2016). Bacterial protein acetylation: new discoveries unanswered questions. Curr. Genet. 62: 335–341, https://doi.org/10.1007/s00294-015-0552-4.Suche in Google Scholar

Wolff, E.C., Park, M.H., and Folk, J.E. (1990). Cleavage of spermidine as the first step in deoxyhypusine synthesis. The role of NAD. J. Biol. Chem. 265: 4793–4799, https://doi.org/10.1016/s0021-9258(19)34042-6.Suche in Google Scholar

Wolff, E.C., Folk, J.E., and Park, M.H. (1997). Enzyme-substrate intermediate formation at lysine 329 of human deoxyhypusine synthase. J. Biol. Chem. 272: 15865–15871, https://doi.org/10.1074/jbc.272.25.15865.Suche in Google Scholar PubMed

Wolff, E.C., Wolff, J., and Park, M.H. (2000). Deoxyhypusine synthase generates and uses bound NADH in a transient hydride transfer mechanism. J. Biol. Chem. 275: 9170–9177, https://doi.org/10.1074/jbc.275.13.9170.Suche in Google Scholar PubMed

Worsham, L.M.S., Trent, M.S., Earls, L., Jolly, C., and Ernst-Fonberg, M.L. (2001). Insights into the catalytic mechanism of HlyC, the internal protein acyltransferase that activates Escherichia coli hemolysin toxin. Biochemistry 40: 13607–13616, https://doi.org/10.1021/bi011032h.Suche in Google Scholar PubMed

Worsham, L.M., Langston, K.G., and Ernst-Fonberg, M.L. (2005). Thermodynamics of a protein acylation: activation of Escherichia coli hemolysin toxin. Biochemistry 44: 1329–1337, https://doi.org/10.1021/bi048479l.Suche in Google Scholar PubMed

Xie, L., Wang, G., Yu, Z., Zhou, M., Li, Q., Huang, H., and Xie, J. (2016a). Proteome-wide lysine glutarylation profiling of the Mycobacterium tuberculosis H37Rv. J. Proteome Res. 15: 1379–1385, https://doi.org/10.1021/acs.jproteome.5b00917.Suche in Google Scholar PubMed

Xie, Z., Zhang, D., Chung, D., Tang, Z., Huang, H., Dai, L., Qi, S., Li, J., Colak, G., Chen, Y., et al.. (2016b). Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation. Mol. Cell. 62: 194–206, https://doi.org/10.1016/j.molcel.2016.03.036.Suche in Google Scholar

Xolalpa, W., Vallecillo, A.J., Lara, M., Mendoza-Hernandez, G., Comini, M., Spallek, R., Singh, M., and Espitia, C. (2007). Identification of novel bacterial plasminogen-binding proteins in the human pathogen Mycobacterium tuberculosis. Proteomics 7: 3332–3341, https://doi.org/10.1002/pmic.200600876.Suche in Google Scholar

Xu, J.Y., Xu, Z., Liu, X.X., Tan, M.J., and Ye, B.C. (2018). Protein acetylation and butyrylation regulate the phenotype and metabolic shifts of the endospore-forming Clostridium acetobutylicum. Mol. Cell. Proteomics 17: 1156–1169, https://doi.org/10.1074/mcp.ra117.000372.Suche in Google Scholar

Xu, Z.W., Zhang, H.N., Zhang, X.R., Jiang, H.W., Liu, C.X., Wu, F.L., Qian, L.L., Hao, B.B., Czajkowsky, D.M., Guo, S.J., et al.. (2019). Interplay between the bacterial protein deacetylase CobB and the second messenger c-di-GMP. EMBO J. 38, https://doi.org/10.15252/embj.2018100948.Suche in Google Scholar

Yakovlieva, L., Wood, T.M., Kemmink, J., Kotsogianni, I., Koller, F., Lassak, J., Martin, N.I., and Walvoort, M.T.C. (2020). A β-hairpin epitope as novel structural requirement for protein arginine rhamnosylation. Chem. Sci. 12: 1560–1567, https://doi.org/10.1039/d0sc05823h. 34163919.Suche in Google Scholar PubMed

Yan, J., Barak, R., Liarzi, O., Shainskaya, A., and Eisenbach, M. (2008). In vivo acetylation of CheY, a response regulator in chemotaxis of Escherichia coli. J. Mol. Biol. 376: 1260–1271, https://doi.org/10.1016/j.jmb.2007.12.070.Suche in Google Scholar

Yanagisawa, T., Sumida, T., Ishii, R., Takemoto, C., and Yokoyama, S. (2010). A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P. Nat. Struct. Mol. Biol. 17: 1136–1143, https://doi.org/10.1038/nsmb.1889.Suche in Google Scholar

Yang, X.J. and Seto, E. (2008). The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol. 9: 206–218, https://doi.org/10.1038/nrm2346.Suche in Google Scholar

Ye, Q., Ji, Q.Q., Yan, W., Yang, F., and Wang, E.D. (2017). Acetylation of lysine ε-amino groups regulates aminoacyl-tRNA synthetase activity in Escherichia coli. J. Biol. Chem. 292: 10709–10722, https://doi.org/10.1074/jbc.m116.770826.Suche in Google Scholar

Yem, A.W., Zurcher-Neely, H.A., Richard, K.A., Staite, N.D., Heinrikson, R.L., and Deibel, M.R.Jr. (1989). Biotinylation of reactive amino groups in native recombinant human interleukin-1 beta. J. Biol. Chem. 264: 17691–17697, https://doi.org/10.1016/s0021-9258(19)84626-4.Suche in Google Scholar

Zähringer, F., Lacanna, E., Jenal, U., Schirmer, T., and Boehm, A. (2013). Structure and signaling mechanism of a zinc-sensory diguanylate cyclase. Structure 21: 1149–1157, https://doi.org/10.1016/j.str.2013.04.026.Suche in Google Scholar PubMed

Zhang, Z.H., Tan, M.J., Xie, Z.Y., Dai, L.Z., Chen, Y., and Zhao, Y.M. (2011). Identification of lysine succinylation as a new post-translational modification. Nat. Chem.l Biol. 7: 58–63, https://doi.org/10.1038/nchembio.495.Suche in Google Scholar PubMed PubMed Central

Zhang, Q.F., Gu, J., Gong, P., Wang, X.D., Tu, S., Bi, L.J., Yu, Z.N., Zhang, Z.P., Cui, Z.Q., Wei, H.P., et al.. (2013). Reversibly acetylated lysine residues play important roles in the enzymatic activity of Escherichia coli N-hydroxyarylamine O-acetyltransferase. FEBS J. 280: 1966–1979, https://doi.org/10.1111/febs.12216.Suche in Google Scholar PubMed

Zhang, W., Wang, C., Song, Y., Shao, C., Zhang, X., and Zang, J. (2015). Structural insights into the mechanism of Escherichia coli YmdB: a 2′-O-acetyl-ADP-ribose deacetylase. J. Struct. Biol. 192: 478–486, https://doi.org/10.1016/j.jsb.2015.10.010.Suche in Google Scholar PubMed

Zhang, Q.F., Zhou, A.P., Li, S.X., Ni, J.J., Tao, J., Lu, J., Wan, B.S., Li, S., Zhang, J., Zhao, S.M., et al.. (2016). Reversible lysine acetylation is involved in DNA replication initiation by regulating activities of initiator DnaA in Escherichia coli. Sci. Rep. 6, https://doi.org/10.1038/srep30837.Suche in Google Scholar PubMed PubMed Central

Zhang, D., Tang, Z., Huang, H., Zhou, G., Cui, C., Weng, Y., Liu, W., Kim, S., Lee, S., Perez-Neut, M., et al.. (2019). Metabolic regulation of gene expression by histone lactylation. Nature 574: 575–580, https://doi.org/10.1038/s41586-019-1678-1.Suche in Google Scholar PubMed PubMed Central

Zhao, K., Chai, X., and Marmorstein, R. (2004). Structure and substrate binding properties of CobB, a Sir2 homolog protein deacetylase from Escherichia coli. J. Mol. Biol. 337: 731–741, https://doi.org/10.1016/j.jmb.2004.01.060.Suche in Google Scholar PubMed

Zhao, Y., Han, Y., Sun, Y., Wei, Z., Chen, J., Niu, X., An, Q., Zhang, L., Qi, R., and Gao, X. (2021). Comprehensive succinylome profiling reveals the pivotal role of lysine succinylation in energy metabolism and quorum sensing of Staphylococcus epidermidis. Front. Microbiol. 11: 632367, https://doi.org/10.3389/fmicb.2020.632367.Suche in Google Scholar PubMed PubMed Central

Zhou, Y., Huang, C., Yin, L., Wan, M., Wang, X., Li, L., Liu, Y., Wang, Z., Fu, P., Zhang, N., et al.. (2017). Nε-fatty acylation of Rho GTPases by a MARTX toxin effector. Science 358: 528–531, https://doi.org/10.1126/science.aam8659.Suche in Google Scholar PubMed

Received: 2021-09-30
Accepted: 2022-01-05
Published Online: 2022-02-17
Published in Print: 2022-07-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2021-0382/html?lang=de
Button zum nach oben scrollen