Startseite Lebenswissenschaften DDX41: a multifunctional DEAD-box protein involved in pre-mRNA splicing and innate immunity
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

DDX41: a multifunctional DEAD-box protein involved in pre-mRNA splicing and innate immunity

  • Alexandra Z. Andreou ORCID logo EMAIL logo
Veröffentlicht/Copyright: 15. März 2021

Abstract

DEAD-box helicases participate in nearly all steps of an RNA’s life. In recent years, increasing evidence has shown that several family members are multitasking enzymes. They are often involved in different processes, which may be typical for RNA helicases, such as RNA export and translation, or atypical, e.g., acting as nucleic acid sensors that activate downstream innate immune signaling. This review focuses on the DEAD-box protein DDX41 and summarizes our current understanding of its roles as an innate immunity sensor in the cytosol and in pre-mRNA splicing in the nucleus and discusses DDX41’s involvement in disease.


Corresponding author: Alexandra Z. Andreou, Institute for Physical Chemistry, University of Münster, Corrensstrasse 30, D-48149Münster, Germany, E-mail:

Award Identifier / Grant number: AN1138/2-1

Acknowledgments

I would like to thank D. Klostermeier and A. Gubaev for comments on the manuscript. I would also like to thank the reviewers for their constructive comments.

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: A.Z. Andreou’s work was supported by the Deutsche Forschungsgemeinschaft (AN1138/2-1 to A.Z.A).

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

Abdul-Ghani, M., Hartman, K.L., and Ngsee, J.K. (2005). Abstrakt interacts with and regulates the expression of sorting nexin-2. J. Cell. Physiol. 204: 210–218, https://doi.org/10.1002/jcp.20285.Suche in Google Scholar PubMed PubMed Central

Agafonov, D.E., Deckert, J., Wolf, E., Odenwälder, P., Bessonov, S., Will, C.L., Urlaub, H., and Lührmann, R. (2011). Semiquantitative proteomic analysis of the human spliceosome via a novel two-dimensional gel electrophoresis method. Mol. Cell Biol. 31: 2667–2682, https://doi.org/10.1128/mcb.05266-11.Suche in Google Scholar

An, J., Luo, Z., An, W., Cao, D., Ma, J., and Liu, Z. (2020). Identification of spliceosome components pivotal to breast cancer survival. RNA Biol.: 1–10, https://doi.org/10.1080/15476286.2020.1822636.Suche in Google Scholar PubMed PubMed Central

Andreou, A.Z., Harms, U., and Klostermeier, D. (2019). Single-stranded regions modulate conformational dynamics and ATPase activity of eIF4A to optimize 5’-UTR unwinding. Nucleic Acids Res. 47: 5260–5275, https://doi.org/10.1093/nar/gkz254.Suche in Google Scholar PubMed PubMed Central

Bessonov, S., Anokhina, M., Will, C.L., Urlaub, H., and Lührmann, R. (2008). Isolation of an active step I spliceosome and composition of its RNP core. Nature 452: 846–850, https://doi.org/10.1038/nature06842.Suche in Google Scholar PubMed

Cheah, J.J.C., Hahn, C.N., Hiwase, D.K., Scott, H.S., and Brown, A.L. (2017). Myeloid neoplasms with germline DDX41 mutation. Int. J. Hematol. 106: 163–174, https://doi.org/10.1007/s12185-017-2260-y.Suche in Google Scholar PubMed

Chen, H., Pei, R., Zhu, W., Zeng, R., Wang, Y., Wang, Y., Lu, M., and Chen, X. (2014). An alternative splicing isoform of MITA antagonizes MITA-mediated induction of type I IFNs. J. Immunol. 192: 1162–1170, https://doi.org/10.4049/jimmunol.1300798.Suche in Google Scholar PubMed

Duan, Y., Zeng, J., Fan, S., Liao, Y., Feng, M., Wang, L., Zhang, Y., and Li, Q. (2019). Herpes simplex virus type 1-encoded miR-H2-3p manipulates cytosolic DNA-stimulated antiviral innate immune response by targeting DDX41. Viruses 11, https://doi.org/10.3390/v11080756.Suche in Google Scholar PubMed PubMed Central

Garbelli, A., Beermann, S., Di Cicco, G., Dietrich, U., and Maga, G. (2011). A motif unique to the human DEAD-box protein DDX3 is important for nucleic acid binding, ATP hydrolysis, RNA/DNA unwinding and HIV-1 replication. PloS One 6: e19810, https://doi.org/10.1371/journal.pone.0019810.Suche in Google Scholar PubMed PubMed Central

Irion, U., and Leptin, M. (1999). Developmental and cell biological functions of the Drosophila DEAD-box protein Abstrakt. Curr. Biol. 9: 1373–1381, https://doi.org/10.1016/s0960-9822(00)80082-2.Suche in Google Scholar PubMed

Jankowsky, E. (2011). RNA helicases at work. binding and rearranging. Trends Biochem. Sci. 36: 19–29, https://doi.org/10.1016/j.tibs.2010.07.008.Suche in Google Scholar PubMed PubMed Central

Jiang, Y., Zhu, Y., Qiu, W., Liu, Y.-J., Cheng, G., Liu, Z.-J., and Ouyang, S. (2017). Structural and functional analyses of human DDX41 DEAD domain. Protein Cell 8: 72–76, https://doi.org/10.1007/s13238-016-0351-9.Suche in Google Scholar PubMed PubMed Central

Jurica, M.S., Licklider, L.J., Gygi, S.R., Grigorieff, N., and Moore, M.J. (2002). Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA 8: 426–439, https://doi.org/10.1017/s1355838202021088.Suche in Google Scholar PubMed PubMed Central

Kadono, M., Kanai, A., Nagamachi, A., Shinriki, S., Kawata, J., Iwato, K., Kyo, T., Oshima, K., Yokoyama, A., Kawamura, T., . (2016). Biological implications of somatic DDX41 p.R525H mutation in acute myeloid leukemia. Exp. Hematol. 44: 745, https://doi.org/10.1016/j.exphem.2016.04.017.Suche in Google Scholar PubMed

Kampmann, M.and Stock, D. (2004). Reverse gyrase has heat-protective DNA chaperone activity independent of supercoiling. Nucleic Acids Res. 32: 3537–3545, https://doi.org/10.1093/nar/gkh683.Suche in Google Scholar PubMed PubMed Central

Lee, K.-G., Kim, S.S.-Y., Kui, L., Voon, D.C.-C., Mauduit, M., Bist, P., Bi, X., Pereira, N.A., Liu, C., Sukumaran, B., . (2015). Bruton’s tyrosine kinase phosphorylates DDX41 and activates its binding of dsDNA and STING to initiate type 1 interferon response. Cell Rep. 10: 1055–1065, https://doi.org/10.1016/j.celrep.2015.01.039.Suche in Google Scholar PubMed

Lewinsohn, M., Brown, A.L., Weinel, L.M., Phung, C., Rafidi, G., Lee, M.K., Schreiber, A.W., Feng, J., Babic, M., Chong, C.E., . (2016). Novel germline DDX41 mutations define families with a lower age of MDS/AML onset, and lymphoid malignancies. Blood 127: 1017–1023.10.1182/blood-2015-10-676098Suche in Google Scholar PubMed PubMed Central

Linder, P., and Jankowsky, E. (2011). From unwinding to clamping - the DEAD box RNA helicase family. Nat. Rev. Mol. Cell Biol. 12: 505–516, https://doi.org/10.1038/nrm3154.Suche in Google Scholar PubMed

Liu, J., Huang, Y., Huang, X., Li, C., Ni, S.W., Yu, Y., and Qin, Q. (2019). Grouper DDX41 exerts antiviral activity against fish iridovirus and nodavirus infection. Fish Shellfish Immunol. 91: 40–49, https://doi.org/10.1016/j.fsi.2019.05.019.Suche in Google Scholar PubMed

Ma, F., Li, B., Liu, S.Y., Iyer, S.S., Yu, Y., Wu, A., and Cheng, G. (2015). Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS. J. Immunol. 194: 1545–1554, https://doi.org/10.4049/jimmunol.1402066.Suche in Google Scholar PubMed PubMed Central

Ma, J.-X., Li, J.-Y., Fan, D.-D., Feng, W., Lin, A.-F., Xiang, L.-X., and Shao, J.-Z. (2018). Identification of DEAD-box RNA helicase DDX41 as a trafficking protein that involves in multiple innate immune signaling pathways in a zebrafish model. Front. Immunol. 9: 1327, https://doi.org/10.3389/fimmu.2018.01327.Suche in Google Scholar PubMed PubMed Central

Moriyama, M., Koshiba, T., and Ichinohe, T. (2019). Influenza A virus M2 protein triggers mitochondrial DNA-mediated antiviral immune responses. Nat. Commun. 10: 4624, https://doi.org/10.1038/s41467-019-12632-5.Suche in Google Scholar PubMed PubMed Central

Omura, H., Oikawa, D., Nakane, T., Kato, M., Ishii, R., Ishitani, R., Tokunaga, F., and Nureki, O. (2016). Structural and Functional Analysis of DDX41: a bispecific immune receptor for DNA and cyclic dinucleotide. Sci. Rep. 6: 34756, https://doi.org/10.1038/srep34756.Suche in Google Scholar PubMed PubMed Central

Parvatiyar, K., Zhang, Z., Teles, R.M., Ouyang, S., Jiang, Y., Iyer, S.S., Zaver, S.A., Schenk, M., Zeng, S., Zhong, W., . (2012). The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat. Immunol. 13: 1155–1161, https://doi.org/10.1038/ni.2460.Suche in Google Scholar PubMed PubMed Central

Peck, M.L., and Herschlag, D. (1999). Effects of oligonucleotide length and atomic composition on stimulation of the ATPase activity of translation initiation factor elF4A. RNA 5: 1210–1221, https://doi.org/10.1017/s1355838299990817.Suche in Google Scholar PubMed PubMed Central

Polprasert, C., Schulze, I., Sekeres, M.A., Makishima, H., Przychodzen, B., Hosono, N., Singh, J., Padgett, R.A., Gu, X., Phillips, J.G., . (2015). Inherited and somatic defects in DDX41 in myeloid neoplasms. Canc. Cell 27: 658–670, https://doi.org/10.1016/j.ccell.2015.03.017.Suche in Google Scholar PubMed PubMed Central

Qu, S., Li, B., Qin, T., Xu, Z., Pan, L., Hu, N., Huang, G., Peter Gale, R., and Xiao, Z. (2020). Molecular and clinical features of myeloid neoplasms with somatic DDX41 mutations. Br. J. Haematol., https://doi.org/10.1111/bjh.16668.Suche in Google Scholar PubMed PubMed Central

Schutz, P., Karlberg, T., van den Berg, S., Collins, R., Lehtio, L., Hogbom, M., Holmberg-Schiavone, L., Tempel, W., Park, H.W., Hammarstrom, M., . (2010). Comparative structural analysis of human DEAD-box RNA helicases. PloS One 5, https://doi.org/10.1371/journal.pone.0012791.Suche in Google Scholar PubMed PubMed Central

Sébert, M., Passet, M., Raimbault, A., Rahmé, R., Raffoux, E., Sicre de Fontbrune, F., Cerrano, M., Quentin, S., Vasquez, N., Da Costa, M., . (2019). Germline DDX41 mutations define a significant entity within adult MDS/AML patients. Blood 134: 1441–1444, https://doi.org/10.1182/blood.2019000909.Suche in Google Scholar PubMed

Soponpong, S., Amparyup, P., Kawai, T., and Tassanakajon, A. (2019). A cytosolic sensor, PmDDX41, binds double stranded-DNA and triggers the activation of an innate antiviral response in the shrimp Penaeus monodon via the STING-dependent signaling pathway. Front. Immunol. 10: 2069, https://doi.org/10.3389/fimmu.2019.02069.Suche in Google Scholar PubMed PubMed Central

Stavrou, S., Blouch, K., Kotla, S., Bass, A., and Ross, S.R. (2015). Nucleic acid recognition orchestrates the anti-viral response to retroviruses. Cell Host Microbe 17: 478–488, https://doi.org/10.1016/j.chom.2015.02.021.Suche in Google Scholar PubMed PubMed Central

Stavrou, S., Aguilera, A.N., Blouch, K., and Ross, S.R. (2018). DDX41 recognizes RNA/DNA retroviral reverse transcripts and is critical for in vivo control of murine leukemia virus infection. mBio 9, https://doi.org/10.1128/mbio.00923-18.Suche in Google Scholar

Sun, L., Wu, J., Du, F., Chen, X., and Chen, Z.J. (2013). Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339: 786–791, https://doi.org/10.1126/science.1232458.Suche in Google Scholar PubMed PubMed Central

Tanaka, Y. and Chen, Z.J. (2012). STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal. 5: ra20, https://doi.org/10.1126/scisignal.2002521.Suche in Google Scholar PubMed PubMed Central

Tsukamoto, T., Gearhart, M.D., Kim, S., Mekonnen, G., Spike, C.A., and Greenstein, D. (2020). Insights into the involvement of spliceosomal mutations in myelodysplastic disorders from analysis of SACY-1/DDX41 in Caenorhabditis elegans. Genetics 214: 869–893, https://doi.org/10.1534/genetics.119.302973.Suche in Google Scholar PubMed PubMed Central

Yoneyama-Hirozane, M., Kondo, M., Matsumoto, S.-I., Morikawa-Oki, A., Morishita, D., Nakanishi, A., Kawamoto, T., and Nakayama, M. (2017). High-throughput screening to identify inhibitors of DEAD box helicase DDX41. SLAS discovery. Adv. Life Sci. R & D 22: 1084–1092, https://doi.org/10.1177/2472555217705952.Suche in Google Scholar PubMed

Zhang, Z., Bao, M., Lu, N., Weng, L., Yuan, B., and Liu, Y.-J. (2013). The E3 ubiquitin ligase TRIM21 negatively regulates the innate immune response to intracellular double-stranded DNA. Nat. Immunol. 14: 172–178, https://doi.org/10.1038/ni.2492.Suche in Google Scholar PubMed PubMed Central

Zhang, Z., Yuan, B., Bao, M., Lu, N., Kim, T., and Liu, Y.J. (2011). The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 12: 959–965, https://doi.org/10.1038/ni.2091.Suche in Google Scholar PubMed PubMed Central

Zhu, X., Wang, D., Zhang, H., Zhou, Y., Luo, R., Chen, H., Xiao, S., and Fang, L. (2014). Molecular cloning and functional characterization of porcine DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 (DDX41). Dev. Comp. Immunol. 47: 191–196, https://doi.org/10.1016/j.dci.2014.07.020.Suche in Google Scholar PubMed

Received: 2020-11-18
Accepted: 2021-03-03
Published Online: 2021-03-15
Published in Print: 2021-04-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2020-0367/html
Button zum nach oben scrollen