Startseite Expansion and inflammation of white adipose tissue - focusing on adipocyte progenitors
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Expansion and inflammation of white adipose tissue - focusing on adipocyte progenitors

  • Wenjing Liu ORCID logo , Dahui Li , Handi Cao , Haoyun Li und Yu Wang EMAIL logo
Veröffentlicht/Copyright: 16. Oktober 2020

Abstract

Adipose tissue is an important organ in our body, participating not only in energy metabolism but also immune regulation. It is broadly classified as white (WAT) and brown (BAT) adipose tissues. WAT is highly heterogeneous, composed of adipocytes, various immune, progenitor and stem cells, as well as the stromal vascular populations. The expansion and inflammation of WAT are hallmarks of obesity and play a causal role in the development of metabolic and cardiovascular diseases. The primary event triggering the inflammatory expansion of WAT remains unclear. The present review focuses on the role of adipocyte progenitors (APS), which give rise to specialized adipocytes, in obesity-associated WAT expansion, inflammation and fibrosis.


Corresponding author: Yu Wang, The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China, E-mail:

Funding source: Hong Kong Health and Medical Research Fund

Award Identifier / Grant number: 04151796

Funding source: Research Grant Council grants from the General Research Fund

Award Identifier / Grant number: 17153016

Funding source: Collaborative Research Fund

Award Identifier / Grant number: C7037-17W

Funding source: Area of Excellence scheme

Award Identifier / Grant number: AoE/M/707-18

Acknowledgements

This work was supported by the grants from Hong Kong Health and Medical Research Fund (04151796), Research Grant Council grants from the General Research Fund (17153016), Collaborative Research Fund (C7037-17W) and the Area of Excellence scheme (AoE/M/707-18).

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the grants from Hong Kong Health and Medical Research Fund (04151796), Research Grant Council grants from the General Research Fund (17153016), Collaborative Research Fund (C7037-17W) and the Area of Excellence scheme (AoE/M/707-18).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Alvehus, M., Buren, J., Sjostrom, M., Goedecke, J., and Olsson, T. (2010). The human visceral fat depot has a unique inflammatory profile. Obesity 18: 879–883, https://doi.org/10.1038/oby.2010.22.Suche in Google Scholar PubMed

Angeles-Martinez, J., Posadas-Sanchez, R., Llorente, L., Alvarez-Leon, E., Ramirez-Bello, J., Villarreal-Molina, T., Lima, G., Cardoso-Saldana, G., Rodriguez-Perez, J.M., Perez-Hernandez, N., et al. (2017). The rs7044343 Polymorphism of the interleukin 33 gene is associated with decreased risk of developing premature coronary artery disease and central obesity, and could Be involved in regulating the production of IL-33. PloS One 12: e0168828, https://doi.org/10.1371/journal.pone.0168828.Suche in Google Scholar PubMed PubMed Central

Badimon, L. and Cubedo, J. (2017). Adipose tissue depots and inflammation: effects on plasticity and resident mesenchymal stem cell function. Cardiovasc. Res. 113: 1064–1073, https://doi.org/10.1093/cvr/cvx096.Suche in Google Scholar PubMed

Bernardo, M.E. and Fibbe, W.E. (2013). Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13: 392–402, https://doi.org/10.1016/j.stem.2013.09.006.Suche in Google Scholar PubMed

Berry, R. and Rodeheffer, M.S. (2013). Characterization of the adipocyte cellular lineage in vivo. Nat. Cell Biol. 15: 302–308, https://doi.org/10.1038/ncb2696.Suche in Google Scholar PubMed PubMed Central

Bourin, P., Bunnell, B.A., Casteilla, L., Dominici, M., Katz, A.J., March, K.L., Redl, H., Rubin, J.P., Yoshimura, K., and Gimble, J.M. (2013). Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15: 641–648, https://doi.org/10.1016/j.jcyt.2013.02.006.Suche in Google Scholar PubMed PubMed Central

Buffolo, M., Pires, K.M., Ferhat, M., Ilkun, O., Makaju, A., Achenbach, A., Bowman, F., Atkinson, D.L., Holland, W.L., et al. (2019). Identification of a paracrine signaling mechanism linking CD34(high) progenitors to the regulation of visceral fat expansion and remodeling. Cell Rep. 29: 270–282 e275, https://doi.org/10.1016/j.celrep.2019.08.092.Suche in Google Scholar PubMed

Cawthorn, W.P., Scheller, E.L., and MacDougald, O.A. (2012). Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J. Lipid Res. 53: 227–246, https://doi.org/10.1194/jlr.r021089.Suche in Google Scholar PubMed PubMed Central

Chau, Y.Y., Bandiera, R., Serrels, A., Martinez-Estrada, O.M., Qing, W., Lee, M., Slight, J., Thornburn, A., Berry, R., McHaffie, S., et al. (2014). Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat. Cell Biol. 16: 367–375, https://doi.org/10.1038/ncb2922.Suche in Google Scholar PubMed PubMed Central

Chen, Y., Ikeda, K., Yoneshiro, T., Scaramozza, A., Tajima, K., Wang, Q., Kim, K., Shinoda, K., Sponton, C.H., Brown, Z., et al. (2019). Thermal stress induces glycolytic beige fat formation via a myogenic state. Nature 565: 180–185, https://doi.org/10.1038/s41586-018-0801-z.Suche in Google Scholar PubMed PubMed Central

Chun, T.H., Hotary, K.B., Sabeh, F., Saltiel, A.R., Allen, E.D., and Weiss, S.J. (2006). A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125: 577–591, https://doi.org/10.1016/j.cell.2006.02.050.Suche in Google Scholar PubMed

Cinti, S., Mitchell, G., Barbatelli, G., Murano, I., Ceresi, E., Faloia, E., Wang, S., Fortier, M., Greenberg, A. S., and Obin, M.S. (2005). Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46: 2347–2355, https://doi.org/10.1194/jlr.m500294-jlr200.Suche in Google Scholar

Cipolletta, D., Cohen, P., Spiegelman, B.M., Benoist, C., and Mathis, D. (2015). Appearance and disappearance of the mRNA signature characteristic of Treg cells in visceral adipose tissue: age, diet, and PPARgamma effects. Proc. Natl. Acad. Sci. U. S. A. 112: 482–487, https://doi.org/10.1073/pnas.1423486112.Suche in Google Scholar PubMed PubMed Central

Cortez, M., Carmo, L.S., Rogero, M.M., Borelli, P., and Fock, R.A. (2013). A high-fat diet increases IL-1, IL-6, and TNF-alpha production by increasing NF-κB and attenuating PPAR-γ expression in bone marrow mesenchymal stem cells. Inflammation 36: 379–386, https://doi.org/10.1007/s10753-012-9557-z.Suche in Google Scholar PubMed

Darimont, C., Avanti, O., Blancher, F., Wagniere, S., Mansourian, R., Zbinden, I., Leone-Vautravers, P., Fuerholz, A., Giusti, V., and Mace, K. (2008). Contribution of mesothelial cells in the expression of inflammatory-related factors in omental adipose tissue of obese subjects. Int. J. Obes. 32: 112–120, https://doi.org/10.1038/sj.ijo.0803688.Suche in Google Scholar PubMed

Deiuliis, J., Shah, Z., Shah, N., Needleman, B., Mikami, D., Narula, V., Perry, K., Hazey, J., Kampfrath, T., Kollengode, M., et al. (2011). Visceral adipose inflammation in obesity is associated with critical alterations in tregulatory cell numbers. PloS One 6: e16376, https://doi.org/10.1371/journal.pone.0016376.Suche in Google Scholar PubMed PubMed Central

Divoux, A., Tordjman, J., Lacasa, D., Veyrie, N., Hugol, D., Aissat, A., Basdevant, A., Guerre-Millo, M., Poitou, C., Zucker, J.D., et al. (2010). Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 59: 2817–2825, https://doi.org/10.2337/db10-0585.Suche in Google Scholar PubMed PubMed Central

Eller, K., Kirsch, A., Wolf, A.M., Sopper, S., Tagwerker, A., Stanzl, U., Wolf, D., Patsch, W., Rosenkranz, A.R., and Eller, P. (2011). Potential role of regulatory T cells in reversing obesity-linked insulin resistance and diabetic nephropathy. Diabetes 60: 2954–2962, https://doi.org/10.2337/db11-0358.Suche in Google Scholar PubMed PubMed Central

Eriksson-Hogling, D., Andersson, D.P., Backdahl, J., Hoffstedt, J., Rossner, S., Thorell, A., Arner, E., Arner, P., and Ryden, M. (2015). Adipose tissue morphology predicts improved insulin sensitivity following moderate or pronounced weight loss. Int. J. Obes. 39: 893–898, https://doi.org/10.1038/ijo.2015.18.Suche in Google Scholar PubMed

Esteve, D., Boulet, N., Volat, F., Zakaroff-Girard, A., Ledoux, S., Coupaye, M., Decaunes, P., Belles, C., Gaits-Iacovoni, F., Iacovoni, J.S., et al. (2015). Human white and brite adipogenesis is supported by MSCA1 and is impaired by immune cells. Stem Cell. 33: 1277–1291, https://doi.org/10.1002/stem.1916.Suche in Google Scholar PubMed

Farmer, S.R. (2006). Transcriptional control of adipocyte formation. Cell Metabol. 4: 263–273, https://doi.org/10.1016/j.cmet.2006.07.001.Suche in Google Scholar PubMed PubMed Central

Feuerer, M., Herrero, L., Cipolletta, D., Naaz, A., Wong, J., Nayer, A., Lee, J., Goldfine, A.B., Benoist, C., Shoelson, S., et al. (2009). Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15: 930–939, https://doi.org/10.1038/nm.2002.Suche in Google Scholar PubMed PubMed Central

Gao, H., Volat, F., Sandhow, L., Galitzky, J., Nguyen, T., Esteve, D., Astrom, G., Mejhert, N., Ledoux, S., Thalamas, C., et al. (2017). CD36 is a marker of human adipocyte progenitors with pronounced adipogenic and triglyceride accumulation potential. Stem Cell. 35: 1799–1814, https://doi.org/10.1002/stem.2635.Suche in Google Scholar PubMed

Gao, Z., Daquinag, A.C., Su, F., Snyder, B., and Kolonin, M.G. (2018). PDGFRalpha/PDGFRbeta signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Development 145, https://doi.org/10.1242/dev.155861.Suche in Google Scholar PubMed PubMed Central

Gesta, S., Bluher, M., Yamamoto, Y., Norris, A.W., Berndt, J., Kralisch, S., Boucher, J., Lewis, C., and Kahn, C.R. (2006). Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc. Natl. Acad. Sci. U. S. A. 103: 6676–6681, https://doi.org/10.1073/pnas.0601752103.Suche in Google Scholar PubMed PubMed Central

Gesta, S., Tseng, Y.H., and Kahn, C.R. (2007). Developmental origin of fat: tracking obesity to its source. Cell 131: 242–256, https://doi.org/10.1016/j.cell.2007.10.004.Suche in Google Scholar PubMed

Ghaben, A.L. and Scherer, P.E. (2019). Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 20: 242–258, https://doi.org/10.1038/s41580-018-0093-z.Suche in Google Scholar PubMed

Giordano, A., Murano, I., Mondini, E., Perugini, J., Smorlesi, A., Severi, I., Barazzoni, R., Scherer, P. E., and Cinti, S. (2013). Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis. J. Lipid Res. 54: 2423–2436, https://doi.org/10.1194/jlr.m038638.Suche in Google Scholar

Giralt, M. and Villarroya, F. (2013). White, brown, beige/brite: different adipose cells for different functions? Endocrinology 154: 2992–3000, https://doi.org/10.1210/en.2013-1403.Suche in Google Scholar PubMed

Gupta, R.K., Mepani, R.J., Kleiner, S., Lo, J.C., Khandekar, M.J., Cohen, P., Frontini, A., Bhowmick, D.C., Ye, L., Cinti, S., et al. (2012). Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metabol. 15: 230–239, https://doi.org/10.1016/j.cmet.2012.01.010.Suche in Google Scholar PubMed PubMed Central

Haider, N. and Larose, L. (2019). Harnessing adipogenesis to prevent obesity. Adipocyte 8: 98–104, https://doi.org/10.1080/21623945.2019.1583037.Suche in Google Scholar PubMed PubMed Central

Halberg, N., Khan, T., Trujillo, M.E., Wernstedt-Asterholm, I., Attie, A.D., Sherwani, S., Wang, Z.V., Landskroner-Eiger, S., Dineen, S., Magalang, U.J., et al. (2009). Hypoxia-inducible factor 1α induces fibrosis and insulin resistance in white adipose tissue. Mol. Cell Biol. 29: 4467–4483, https://doi.org/10.1128/mcb.00192-09.Suche in Google Scholar

Han, J.M., Wu, D., Denroche, H.C., Yao, Y., Verchere, C.B., and Levings, M.K. (2015). IL-33 reverses an obesity-induced deficit in visceral adipose tissue ST2+ T regulatory cells and ameliorates adipose tissue inflammation and insulin resistance. J. Immunol. 194: 4777–4783, https://doi.org/10.4049/jimmunol.1500020.Suche in Google Scholar PubMed

Hasan, A., Al-Ghimlas, F., Warsame, S., Al-Hubail, A., Ahmad, R., Bennakhi, A., Al-Arouj, M., Behbehani, K., Dehbi, M., and Dermime, S. (2014). IL-33 is negatively associated with the BMI and confers a protective lipid/metabolic profile in non-diabetic but not diabetic subjects. BMC Immunol. 15: 19, https://doi.org/10.1186/1471-2172-15-9.Suche in Google Scholar PubMed PubMed Central

Haylett, W.L. and Ferris, W.F. (2020). Adipocyte-progenitor cell communication that influences adipogenesis. Cell. Mol. Life Sci. 77: 115–128, https://doi.org/10.1007/s00018-019-03256-5.Suche in Google Scholar PubMed

Hepler, C., Shan, B., Zhang, Q., Henry, G.H., Shao, M., Vishvanath, L., Ghaben, A.L., Mobley, A.B., Strand, D., Hon, G.C., et al. (2018). Identification of functionally distinct fibro-inflammatory and adipogenic stromal subpopulations in visceral adipose tissue of adult mice. eLife 7, https://doi.org/10.7554/elife.39636.Suche in Google Scholar

Hill, D.A., Lim, H.W., Kim, Y.H., Ho, W.Y., Foong, Y.H., Nelson, V.L., Nguyen, H.C.B., Chegireddy, K., Kim, J., Habertheuer, A., et al. (2018). Distinct macrophage populations direct inflammatory versus physiological changes in adipose tissue. Proc. Natl. Acad. Sci. U. S. A. 115: E5096–E5105, https://doi.org/10.1073/pnas.1802611115.Suche in Google Scholar PubMed PubMed Central

Hudak, C.S., Gulyaeva, O., Wang, Y., Park, S.M., Lee, L., Kang, C., and Sul, H.S. (2014). Pref-1 marks very early mesenchymal precursors required for adipose tissue development and expansion. Cell Rep. 8: 678–687, https://doi.org/10.1016/j.celrep.2014.06.060.Suche in Google Scholar PubMed PubMed Central

Hwang, I., Jo, K., Shin, K.C., Kim, J.I., Ji, Y., Park, Y.J., Park, J., Jeon, Y.G., Ka, S., Suk, S., et al. (2019). GABA-stimulated adipose-derived stem cells suppress subcutaneous adipose inflammation in obesity. Proc. Natl. Acad. Sci. U. S. A. 116: 11936–11945, https://doi.org/10.1073/pnas.1822067116.Suche in Google Scholar PubMed PubMed Central

Ibrahim, M.M. (2010). Subcutaneous and visceral adipose tissue: structural and functional differences. Obes. Rev. 11: 11–18, https://doi.org/10.1111/j.1467-789x.2009.00623.x.Suche in Google Scholar

Ilan, Y., Maron, R., Tukpah, A.M., Maioli, T.U., Murugaiyan, G., Yang, K., Wu, H.Y., and Weiner, H.L. (2010). Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc. Natl. Acad. Sci. U. S. A. 107: 9765–9770, https://doi.org/10.1073/pnas.0908771107.Suche in Google Scholar PubMed PubMed Central

Iwayama, T., Steele, C., Yao, L., Dozmorov, M.G., Karamichos, D., Wren, J.D., and Olson, L.E. (2015). PDGFRalpha signaling drives adipose tissue fibrosis by targeting progenitor cell plasticity. Genes Dev. 29: 1106–1119, https://doi.org/10.1101/gad.260554.115.Suche in Google Scholar PubMed PubMed Central

Jaitin, D.A., Adlung, L., Thaiss, C.A., Weiner, A., Li, B., Descamps, H., Lundgren, P., Bleriot, C., Liu, Z., Deczkowska, A., et al. (2019). Lipid-associated macrophages control metabolic homeostasis in a trem2-dependent manner. Cell 178: 686–698 e614, https://doi.org/10.1016/j.cell.2019.05.054.Suche in Google Scholar PubMed PubMed Central

Jeffery, E., Church, C.D., Holtrup, B., Colman, L., and Rodeheffer, M.S. (2015). Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat. Cell Biol. 17: 376–385, https://doi.org/10.1038/ncb3122.Suche in Google Scholar PubMed PubMed Central

Joe, A.W., Yi, L., Even, Y., Vogl, A.W., and Rossi, F.M. (2009). Depot-specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet. Stem Cell. 27: 2563–2570, https://doi.org/10.1002/stem.190.Suche in Google Scholar PubMed

Johnson, A.R., Milner, J.J., and Makowski, L. (2012). The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol. Rev. 249: 218–238, https://doi.org/10.1111/j.1600-065x.2012.01151.x.Suche in Google Scholar

Kahn, C.R., Wang, G., and Lee, K.Y. (2019). Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J. Clin. Invest. 129: 3990–4000, https://doi.org/10.1172/jci129187.Suche in Google Scholar

Kanda, H., Tateya, S., Tamori, Y., Kotani, K., Hiasa, K., Kitazawa, R., Kitazawa, S., Miyachi, H., Maeda, S., Egashira, K., et al. (2006). MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116: 1494–1505, https://doi.org/10.1172/jci26498.Suche in Google Scholar

Kaplan, J.L., Marshall, M.A., McSkimming, C.C., Harmon, D.B., Garmey, J.C., Oldham, S.N., Hallowell, P., and McNamara, C.A. (2015). Adipocyte progenitor cells initiate monocyte chemoattractant protein-1-mediated macrophage accumulation in visceral adipose tissue. Mol Metab 4: 779–794, https://doi.org/10.1016/j.molmet.2015.07.010.Suche in Google Scholar PubMed PubMed Central

Khan, T., Muise, E.S., Iyengar, P., Wang, Z.V., Chandalia, M., Abate, N., Zhang, B.B., Bonaldo, P., Chua, S., and Scherer, P.E. (2009). Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell Biol. 29: 1575–1591, https://doi.org/10.1128/mcb.01300-08.Suche in Google Scholar

Kim, S.M., Lun, M., Wang, M., Senyo, S.E., Guillermier, C., Patwari, P., and Steinhauser, M.L. (2014). Loss of white adipose hyperplastic potential is associated with enhanced susceptibility to insulin resistance. Cell Metabol. 20: 1049–1058, https://doi.org/10.1016/j.cmet.2014.10.010.Suche in Google Scholar PubMed PubMed Central

Kolodin, D., van Panhuys, N., Li, C., Magnuson, A.M., Cipolletta, D., Miller, C.M., Wagers, A., Germain, R.N., Benoist, C., and Mathis, D. (2015). Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell Metabol. 21: 543–557, https://doi.org/10.1016/j.cmet.2015.03.005.Suche in Google Scholar PubMed PubMed Central

Kosteli, A., Sugaru, E., Haemmerle, G., Martin, J.F., Lei, J., Zechner, R., and Ferrante, A.W.Jr. (2010). Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J. Clin. Invest. 120: 3466–3479, https://doi.org/10.1172/jci42845.Suche in Google Scholar

Kraakman, M.J., Kammoun, H.L., Allen, T.L., Deswaerte, V., Henstridge, D.C., Estevez, E., Matthews, V.B., Neill, B., White, D.A., Murphy, A.J., et al. (2015). Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metabol. 21: 403–416, https://doi.org/10.1016/j.cmet.2015.02.006.Suche in Google Scholar PubMed

Lee, K.Y., Luong, Q., Sharma, R., Dreyfuss, J.M., Ussar, S., and Kahn, C.R. (2019). Developmental and functional heterogeneity of white adipocytes within a single fat depot. EMBO J. 38, https://doi.org/10.15252/embj.201899291.Suche in Google Scholar PubMed PubMed Central

Li, C., Spallanzani, R.G., and Mathis, D. (2020). Visceral adipose tissue Tregs and the cells that nurture them. Immunol. Rev. 295: 114–125, https://doi.org/10.1111/imr.12850.Suche in Google Scholar PubMed

Li, P., Lu, M., Nguyen, M.T., Bae, E.J., Chapman, J., Feng, D., Hawkins, M., Pessin, J.E., Sears, D.D., Nguyen, A.K., et al. (2010). Functional heterogeneity of CD11c-positive adipose tissue macrophages in diet-induced obese mice. J. Biol. Chem. 285: 15333–15345, https://doi.org/10.1074/jbc.m110.100263.Suche in Google Scholar

Lin, J.Z., Rabhi, N., and Farmer, S.R. (2018). Myocardin-related transcription factor A promotes recruitment of ITGA5+ profibrotic progenitors during obesity-induced adipose tissue fibrosis. Cell Rep. 23: 1977–1987, https://doi.org/10.1016/j.celrep.2018.04.057.Suche in Google Scholar PubMed PubMed Central

Locke, M., Windsor, J., and Dunbar, P.R. (2009). Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ J. Surg. 79: 235–244, https://doi.org/10.1111/j.1445-2197.2009.04852.x.Suche in Google Scholar PubMed

Longo, M., Zatterale, F., Naderi, J., Parrillo, L., Formisano, P., Raciti, G.A., Beguinot, F., and Miele, C. (2019). Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int. J. Mol. Sci. 20, https://doi.org/10.3390/ijms20092358.Suche in Google Scholar PubMed PubMed Central

Lumeng, C.N., Bodzin, J.L., and Saltiel, A.R. (2007). Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117: 175–184, https://doi.org/10.1172/jci29881.Suche in Google Scholar

Lumeng, C.N., DelProposto, J.B., Westcott, D.J., and Saltiel, A.R. (2008). Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 57: 3239–3246, https://doi.org/10.2337/db08-0872.Suche in Google Scholar PubMed PubMed Central

Macotela, Y., Emanuelli, B., Mori, M.A., Gesta, S., Schulz, T.J., Tseng, Y.H., and Kahn, C.R. (2012). Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes 61: 1691–1699, https://doi.org/10.2337/db11-1753.Suche in Google Scholar PubMed PubMed Central

Mahlakoiv, T., Flamar, A.L., Johnston, L.K., Moriyama, S., Putzel, G.G., Bryce, P.J., and Artis, D. (2019). Stromal cells maintain immune cell homeostasis in adipose tissue via production of interleukin-33. Sci Immunol 4, https://doi.org/10.1126/sciimmunol.aax0416.Suche in Google Scholar PubMed PubMed Central

Marcelin, G., Ferreira, A., Liu, Y., Atlan, M., Aron-Wisnewsky, J., Pelloux, V., Botbol, Y., Ambrosini, M., Fradet, M., Rouault, C., et al. (2017). A PDGFRalpha-mediated switch toward CD9(high) adipocyte progenitors controls obesity-induced adipose tissue fibrosis. Cell Metabol. 25: 673–685, https://doi.org/10.1016/j.cmet.2017.01.010.Suche in Google Scholar PubMed

Marcelin, G., Silveira, A.L.M., Martins, L.B., Ferreira, A.V., and Clement, K. (2019). Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis. J. Clin. Invest. 129: 4032–4040, https://doi.org/10.1172/jci129192.Suche in Google Scholar PubMed PubMed Central

Martyniak, K. and Masternak, M.M. (2017). Changes in adipose tissue cellular composition during obesity and aging as a cause of metabolic dysregulation. Exp. Gerontol. 94: 59–63, https://doi.org/10.1016/j.exger.2016.12.007.Suche in Google Scholar PubMed PubMed Central

McNelis, J.C. and Olefsky, J.M. (2014). Macrophages, immunity, and metabolic disease. Immunity 41: 36–48, https://doi.org/10.1016/j.immuni.2014.05.010.Suche in Google Scholar PubMed

Merrick, D., Sakers, A., Irgebay, Z., Okada, C., Calvert, C., Morley, M.P., Percec, I., and Seale, P. (2019). Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 364, https://doi.org/10.1126/science.aav2501.Suche in Google Scholar PubMed PubMed Central

Miwa, H. and Era, T. (2018). Tracing the destiny of mesenchymal stem cells from embryo to adult bone marrow and white adipose tissue via Pdgfralpha expression. Development 145, https://doi.org/10.1242/dev.155879.Suche in Google Scholar PubMed

Mutsaers, S.E., Birnie, K., Lansley, S., Herrick, S.E., Lim, C.B., and Prele, C.M. (2015). Mesothelial cells in tissue repair and fibrosis. Front. Pharmacol. 6: 113, https://doi.org/10.3389/fphar.2015.00113.Suche in Google Scholar PubMed PubMed Central

Nishimura, S., Manabe, I., Nagasaki, M., Eto, K., Yamashita, H., Ohsugi, M., Otsu, M., Hara, K., Ueki, K., Sugiura, S., et al. (2009). CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15: 914–920, https://doi.org/10.1038/nm.1964.Suche in Google Scholar PubMed

Oguri, Y., Shinoda, K., Kim, H., Alba, D.L., Bolus, W.R., Wang, Q., Brown, Z., Pradhan, R.N., Tajima, K., Yoneshiro, T., et al. (2020). CD81 controls beige fat progenitor cell growth and energy balance via FAK signaling. Cell 182: 563–577 e520, https://doi.org/10.1016/j.cell.2020.06.021.Suche in Google Scholar PubMed PubMed Central

Olson, L.E. and Soriano, P. (2009). Increased PDGFRalpha activation disrupts connective tissue development and drives systemic fibrosis. Dev. Cell 16: 303–313, https://doi.org/10.1016/j.devcel.2008.12.003.Suche in Google Scholar PubMed PubMed Central

Olson, L.E. and Soriano, P. (2011). PDGFRbeta signaling regulates mural cell plasticity and inhibits fat development. Dev. Cell 20: 815–826, https://doi.org/10.1016/j.devcel.2011.04.019.Suche in Google Scholar PubMed PubMed Central

Pichery, M., Mirey, E., Mercier, P., Lefrancais, E., Dujardin, A., Ortega, N., and Girard, J.P. (2012). Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33-LacZ gene trap reporter strain. J. Immunol. 188: 3488–3495, https://doi.org/10.4049/jimmunol.1101977.Suche in Google Scholar PubMed

Pollard, A.E. and Carling, D. (2020). Thermogenic adipocytes: lineage, function and therapeutic potential. Biochem. J. 477: 2071–2093, https://doi.org/10.1042/bcj20200298.Suche in Google Scholar

Prieur, X., Mok, C.Y., Velagapudi, V.R., Nunez, V., Fuentes, L., Montaner, D., Ishikawa, K., Camacho, A., Barbarroja, N., O’Rahilly, S., et al. (2011). Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice. Diabetes 60: 797–809, https://doi.org/10.2337/db10-0705.Suche in Google Scholar PubMed PubMed Central

Raajendiran, A., Ooi, G., Bayliss, J., O’Brien, P.E., Schittenhelm, R.B., Clark, A.K., Taylor, R.A., Rodeheffer, M.S., Burton, P.R., and Watt, M.J. (2019). Identification of metabolically distinct adipocyte progenitor cells in human adipose tissues. Cell Rep. 27: 1528–1540: e1527, https://doi.org/10.1016/j.celrep.2019.04.010.Suche in Google Scholar PubMed

Reilly, S.M. and Saltiel, A.R. (2017). Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 13: 633–643, https://doi.org/10.1038/nrendo.2017.90.Suche in Google Scholar PubMed

Rinkevich, Y., Mori, T., Sahoo, D., Xu, P.X., Bermingham, J.R.Jr., and Weissman, I.L. (2012). Identification and prospective isolation of a mesothelial precursor lineage giving rise to smooth muscle cells and fibroblasts for mammalian internal organs, and their vasculature. Nat. Cell Biol. 14: 1251–1260, https://doi.org/10.1038/ncb2610.Suche in Google Scholar PubMed PubMed Central

Rodeheffer, M.S., Birsoy, K., and Friedman, J.M. (2008). Identification of white adipocyte progenitor cells in vivo. Cell 135: 240–249, https://doi.org/10.1016/j.cell.2008.09.036.Suche in Google Scholar PubMed

Rosen, E.D. and Spiegelman, B.M. (2014). What we talk about when we talk about fat. Cell 156: 20–44, https://doi.org/10.1016/j.cell.2013.12.012.Suche in Google Scholar PubMed PubMed Central

Sanchez-Gurmaches, J. and Guertin, D.A. (2014). Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat. Commun. 5: 4099, https://doi.org/10.1038/ncomms5099.Suche in Google Scholar PubMed PubMed Central

Sanchez-Gurmaches, J., Hsiao, W.Y., and Guertin, D.A. (2015). Highly selective in vivo labeling of subcutaneous white adipocyte precursors with Prx1-Cre. Stem Cell Reports 4: 541–550, https://doi.org/10.1016/j.stemcr.2015.02.008.Suche in Google Scholar PubMed PubMed Central

Scheja, L. and Heeren, J. (2019). The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 15: 507–524, https://doi.org/10.1038/s41574-019-0230-6.Suche in Google Scholar PubMed

Schoettl, T., Fischer, I.P., and Ussar, S. (2018). Heterogeneity of adipose tissue in development and metabolic function. J. Exp. Biol. 221, https://doi.org/10.1242/jeb.162958.Suche in Google Scholar PubMed

Schwalie, P.C., Dong, H., Zachara, M., Russeil, J., Alpern, D., Akchiche, N., Caprara, C., Sun, W., Schlaudraff, K.U., Soldati, G., et al. (2018). A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature 559: 103–108, https://doi.org/10.1038/s41586-018-0226-8.Suche in Google Scholar PubMed

Sebo, Z.L. and Rodeheffer, M.S. (2019). Assembling the adipose organ: adipocyte lineage segregation and adipogenesis in vivo. Development 146, https://doi.org/10.1242/dev.172098.Suche in Google Scholar PubMed PubMed Central

Seki, T., Hosaka, K., Lim, S., Fischer, C., Honek, J., Yang, Y., Andersson, P., Nakamura, M., Naslund, E., Yla-Herttuala, S., et al. (2016). Endothelial PDGF-CC regulates angiogenesis-dependent thermogenesis in beige fat. Nat. Commun. 7: 12152, https://doi.org/10.1038/ncomms12152.Suche in Google Scholar PubMed PubMed Central

Shao, M., Vishvanath, L., Busbuso, N. C., Hepler, C., Shan, B., Sharma, A.X., Chen, S., Yu, X., An, Y. A., Zhu, Y., et al. (2018). De novo adipocyte differentiation from Pdgfrbeta(+) preadipocytes protects against pathologic visceral adipose expansion in obesity. Nat. Commun. 9: 890, https://doi.org/10.1038/s41467-018-03196-x.Suche in Google Scholar PubMed PubMed Central

Spallanzani, R.G., Zemmour, D., Xiao, T., Jayewickreme, T., Li, C., Bryce, P.J., Benoist, C., and Mathis, D. (2019). Distinct immunocyte-promoting and adipocyte-generating stromal components coordinate adipose tissue immune and metabolic tenors. Sci Immunol 4, https://doi.org/10.1126/sciimmunol.aaw3658.Suche in Google Scholar PubMed PubMed Central

Tang, W., Zeve, D., Suh, J.M., Bosnakovski, D., Kyba, M., Hammer, R.E., Tallquist, M.D., and Graff, J.M. (2008). White fat progenitor cells reside in the adipose vasculature. Science 322: 583–586, https://doi.org/10.1126/science.1156232.Suche in Google Scholar PubMed PubMed Central

Vasanthakumar, A., Moro, K., Xin, A., Liao, Y., Gloury, R., Kawamoto, S., Fagarasan, S., Mielke, L.A., Afshar-Sterle, S., Masters, S.L., et al. (2015). The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat. Immunol. 16: 276–285, https://doi.org/10.1038/ni.3085.Suche in Google Scholar PubMed

Villanueva, C.J. (2020). Finding a needle in a haystack: identification of a beige fat progenitor. Cell 182: 537–539, https://doi.org/10.1016/j.cell.2020.07.014.Suche in Google Scholar PubMed

Vishvanath, L. and Gupta, R.K. (2019). Contribution of adipogenesis to healthy adipose tissue expansion in obesity. J. Clin. Invest. 129: 4022–4031, https://doi.org/10.1172/jci129191.Suche in Google Scholar PubMed PubMed Central

Vishvanath, L., MacPherson, K.A., Hepler, C., Wang, Q.A., Shao, M., Spurgin, S.B., Wang, M.Y., Kusminski, C.M., Morley, T.S., and Gupta, R.K. (2016). Pdgfrβ+ mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metabol. 23: 350–359, https://doi.org/10.1016/j.cmet.2015.10.018.Suche in Google Scholar PubMed PubMed Central

Wang, Q.A., Tao, C., Gupta, R.K., and Scherer, P.E. (2013). Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 19: 1338–1344, https://doi.org/10.1038/nm.3324.Suche in Google Scholar PubMed PubMed Central

Weisberg, S.P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R.L., and Ferrante, A.W.Jr. (2003). Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112: 1796–1808, https://doi.org/10.1172/jci200319246.Suche in Google Scholar

Wensveen, F.M., Valentic, S., Sestan, M., Turk Wensveen, T., and Polic, B. (2015). The "Big Bang" in obese fat: events initiating obesity-induced adipose tissue inflammation. Eur. J. Immunol. 45: 2446–2456, https://doi.org/10.1002/eji.201545502.Suche in Google Scholar PubMed

Wentworth, J.M., Naselli, G., Brown, W.A., Doyle, L., Phipson, B., Smyth, G.K., Wabitsch, M., O’Brien, P.E., and Harrison, L.C. (2010). Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes 59: 1648–1656, https://doi.org/10.2337/db09-0287.Suche in Google Scholar PubMed PubMed Central

Winer, S., Chan, Y., Paltser, G., Truong, D., Tsui, H., Bahrami, J., Dorfman, R., Wang, Y., Zielenski, J., Mastronardi, F., et al. (2009). Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 15: 921–929, https://doi.org/10.1038/nm.2001.Suche in Google Scholar PubMed PubMed Central

Wu, J., Bostrom, P., Sparks, L.M., Ye, L., Choi, J.H., Giang, A.H., Khandekar, M., Virtanen, K.A., Nuutila, P., Schaart, G., et al. (2012). Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150: 366–376, https://doi.org/10.1016/j.cell.2012.05.016.Suche in Google Scholar PubMed PubMed Central

Xu, H., Barnes, G.T., Yang, Q., Tan, G., Yang, D., Chou, C J., Sole, J., Nichols, A., Ross, J. S., Tartaglia, L. A., et al. (2003). Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112: 1821–1830, https://doi.org/10.1172/jci200319451.Suche in Google Scholar

Yamashita, A., Soga, Y., Iwamoto, Y., Yoshizawa, S., Iwata, H., Kokeguchi, S., Takashiba, S., and Nishimura, F. (2007). Macrophage-adipocyte interaction: marked interleukin-6 production by lipopolysaccharide. Obesity 15: 2549–2552, https://doi.org/10.1038/oby.2007.305.Suche in Google Scholar PubMed

Yanez-Mo, M., Lara-Pezzi, E., Selgas, R., Ramirez-Huesca, M., Dominguez-Jimenez, C., Jimenez-Heffernan, J.A., Aguilera, A., Sanchez-Tomero, J.A., Bajo, M.A., Alvarez, V., et al. (2003). Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N. Engl. J. Med. 348: 403–413, https://doi.org/10.1056/nejmoa020809.Suche in Google Scholar PubMed

Zeyda, M., Gollinger, K., Kriehuber, E., Kiefer, F.W., Neuhofer, A., and Stulnig, T.M. (2010). Newly identified adipose tissue macrophage populations in obesity with distinct chemokine and chemokine receptor expression. Int. J. Obes. 34: 1684–1694, https://doi.org/10.1038/ijo.2010.103.Suche in Google Scholar PubMed

Received: 2019-12-30
Accepted: 2020-10-01
Published Online: 2020-10-16
Published in Print: 2021-01-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 15.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2019-0451/html?lang=de
Button zum nach oben scrollen