Startseite Lebenswissenschaften Direct coupling analysis improves the identification of beneficial amino acid mutations for the functional thermostabilization of a delicate decarboxylase
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Direct coupling analysis improves the identification of beneficial amino acid mutations for the functional thermostabilization of a delicate decarboxylase

  • Martin Peng , Manfred Maier , Jan Esch , Alexander Schug und Kersten S. Rabe ORCID logo EMAIL logo
Veröffentlicht/Copyright: 31. August 2019

Abstract

The optimization of enzyme properties for specific reaction conditions enables their tailored use in biotechnology. Predictions using established computer-based methods, however, remain challenging, especially regarding physical parameters such as thermostability without concurrent loss of activity. Employing established computational methods such as energy calculations using FoldX can lead to the identification of beneficial single amino acid substitutions for the thermostabilization of enzymes. However, these methods require a three-dimensional (3D)-structure of the enzyme. In contrast, coevolutionary analysis is a computational method, which is solely based on sequence data. To enable a comparison, we employed coevolutionary analysis together with structure-based approaches to identify mutations, which stabilize an enzyme while retaining its activity. As an example, we used the delicate dimeric, thiamine pyrophosphate dependent enzyme ketoisovalerate decarboxylase (Kivd) and experimentally determined its stability represented by a T50 value indicating the temperature where 50% of enzymatic activity remained after incubation for 10 min. Coevolutionary analysis suggested 12 beneficial mutations, which were not identified by previously established methods, out of which four mutations led to a functional Kivd with an increased T50 value of up to 3.9°C.

Acknowledgments

K.S.R., M.P. and M.M. acknowledge funding via the Helmholtz programme ‘BioInterfaces in Technology and Medicine’. J.E. and A.S. are supported by the Helmholtz Association Initiative and Networking Fund under project number ZT-I-0003. We thank Anke Dech for help with the protein purification.

References

Abdel-Banat, B.M.A., Hoshida, H., Ano, A., Nonklang, S., and Akada, R. (2010). High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl. Microbiol. Biotechnol. 85, 861–867.10.1007/s00253-009-2248-5Suche in Google Scholar PubMed

Berthold, C.L., Gocke, D., Wood, M.D., Leeper, F.J., Pohl, M., and Schneider, G. (2007). Structure of the branched-chain keto acid decarboxylase (KdcA) from Lactococcus lactis provides insights into the structural basis for the chemoselective and enantioselective carboligation reaction. Acta Crystallogr. D Biol. Crystallogr. 63, 1217–1224.10.1107/S0907444907050433Suche in Google Scholar PubMed

Bornscheuer, U.T., Huisman, G.W., Kazlauskas, R.J., Lutz, S., Moore, J.C., and Robins, K. (2012). Engineering the third wave of biocatalysis. Nature 485, 185–194.10.1038/nature11117Suche in Google Scholar PubMed

Broom, A., Jacobi, Z., Trainor, K., and Meiering, E.M. (2017). Computational tools help improve protein stability but with a solubility tradeoff. J. Biol. Chem. 292, 14349–14361.10.1074/jbc.M117.784165Suche in Google Scholar PubMed PubMed Central

Buss, O., Muller, D., Jager, S., Rudat, J., and Rabe, K.S. (2018). Improvement in the thermostability of a β-amino acid converting ω-transaminase by using FoldX. ChemBioChem 19, 379–387.10.1002/cbic.201700467Suche in Google Scholar PubMed

Dago, A.E., Schug, A., Procaccini, A., Hoch, J.A., Weigt, M., and Szurmant, H. (2012). Structural basis of histidine kinase autophosphorylation deduced by integrating genomics, molecular dynamics, and mutagenesis. Proc. Natl. Acad. Sci. U.S.A. 109, E1733–1742.10.1073/pnas.1201301109Suche in Google Scholar PubMed PubMed Central

Das, R. and Gerstein, M. (2004). A method using active-site sequence conservation to find functional shifts in protein families: application to the enzymes of central metabolism, leading to the identification of an anomalous isocitrate dehydrogenase in pathogens. Proteins Struct. Funct. Bioinf. 55, 455–463.10.1002/prot.10639Suche in Google Scholar PubMed

El-Gebali, S., Mistry, J., Bateman, A., Eddy, S.R., Luciani, A., Potter, S.C., Qureshi, M., Richardson, L.J., Salazar, G.A., Smart, A., et al. (2019). The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432.10.1093/nar/gky995Suche in Google Scholar PubMed PubMed Central

Figliuzzi, M., Jacquier, H., Schug, A., Tenaillon, O., and Weigt, M. (2016). Coevolutionary landscape inference and the context-dependence of mutations in β-lactamase TEM-1. Mol. Biol. Evol. 33, 268–280.10.1093/molbev/msv211Suche in Google Scholar PubMed PubMed Central

Finn, R.D., Clements, J., Arndt, W., Miller, B.L., Wheeler, T.J., Schreiber, F., Bateman, A., and Eddy, S.R. (2015). HMMER web server: 2015 update. Nucleic Acids Res. 43, W30–W38.10.1093/nar/gkv397Suche in Google Scholar PubMed PubMed Central

Kristjansson, J.K. (1989). Thermophilic organisms as sources of thermostable enzymes. Trends Biotechnol. 7, 349–353.10.1016/0167-7799(89)90035-8Suche in Google Scholar

Kyte, J. and Doolittle, R.F. (1982). A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132.10.1016/0022-2836(82)90515-0Suche in Google Scholar PubMed

Lin, P.P., Rabe, K.S., Takasumi, J.L., Kadisch, M., Arnold, F.H., and Liao, J.C. (2014). Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius. Metab. Eng. 24, 1–8.10.1016/j.ymben.2014.03.006Suche in Google Scholar PubMed

Maier, M., Radtke, C.P., Hubbuch, J., Niemeyer, C.M., and Rabe, K.S. (2018). On-demand production of flow-reactor cartridges by 3D printing of thermostable enzymes. Angew. Chem. Int. Ed. Engl. 57, 5539–5543.10.1002/anie.201711072Suche in Google Scholar PubMed

Modarres, H.P., Mofrad, M.R., and Sanati-Nezhad, A. (2016). Protein thermostability engineering. RSC Adv. 6, 115252–115270.10.1039/C6RA16992ASuche in Google Scholar

Morcos, F., Pagnani, A., Lunt, B., Bertolino, A., Marks, D.S., Sander, C., Zecchina, R., Onuchic, J.N., Hwa, T., and Weigt, M. (2011). Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc. Natl. Acad. Sci. U.S.A. 108, E1293–E1301.10.1073/pnas.1111471108Suche in Google Scholar PubMed PubMed Central

Pal, D. and Chakrabarti, P. (2001). Non-hydrogen bond interactions involving the methionine sulfur atom. J. Biomol. Struct. Dyn. 19, 115–128.10.1080/07391102.2001.10506725Suche in Google Scholar PubMed

Potapov, V., Cohen, M., and Schreiber, G. (2009). Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details. Protein Eng. Des. Sel. 22, 553–560.10.1093/protein/gzp030Suche in Google Scholar PubMed

Pucci, F., Bourgeas, R., and Rooman, M. (2016). Predicting protein thermal stability changes upon point mutations using statistical potentials: introducing HoTMuSiC. Sci. Rep. 6, 23257.10.1038/srep23257Suche in Google Scholar PubMed PubMed Central

Romero, P.A. and Arnold, F.H. (2009). Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell Biol. 10, 866–876.10.1038/nrm2805Suche in Google Scholar PubMed PubMed Central

Schug, A., Weigt, M., Onuchic, J.N., Hwa, T., and Szurmant, H. (2009). High-resolution protein complexes from integrating genomic information with molecular simulation. Proc. Natl. Acad. Sci. U.S.A. 106, 22124–22129.10.1073/pnas.0912100106Suche in Google Scholar PubMed PubMed Central

Schwab, T. and Sterner, R. (2011). Stabilization of a metabolic enzyme by library selection in Thermus thermophilus. ChemBioChem 12, 1581–1588.10.1002/cbic.201000770Suche in Google Scholar PubMed

Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., and Serrano, L. (2005). The FoldX web server: an online force field. Nucleic Acids Res. 33, W382–W388.10.1093/nar/gki387Suche in Google Scholar PubMed PubMed Central

Soh, L.M.J., Mak, W.S., Lin, P.P., Mi, L., Chen, F.Y., Damoiseaux, R., Siegel, J.B., and Liao, J.C. (2017). Engineering a thermostable keto acid decarboxylase using directed evolution and computationally directed protein design. ACS Synth. Biol. 6, 610–618.10.1021/acssynbio.6b00240Suche in Google Scholar PubMed

Song, Y., DiMaio, F., Wang, R.Y., Kim, D., Miles, C., Brunette, T., Thompson, J., and Baker, D. (2013). High-resolution comparative modeling with RosettaCM. Structure 21, 1735–1742.10.1016/j.str.2013.08.005Suche in Google Scholar PubMed PubMed Central

Sutiono, S., Carsten, J., and Sieber, V. (2018). Structure-guided engineering of α-keto acid decarboxylase for the production of higher alcohols at elevated temperature. ChemSusChem 11, 3335–3344.10.1002/cssc.201800944Suche in Google Scholar PubMed

Tatko, C.D. and Waters, M.L. (2004). Investigation of the nature of the methionine-pi interaction in β-hairpin peptide model systems. Protein Sci. 13, 2515–2522.10.1110/ps.04820104Suche in Google Scholar PubMed PubMed Central

Turner, P., Mamo, G., and Karlsson, E.N. (2007). Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb. Cell Fact. 6, 9.10.1186/1475-2859-6-9Suche in Google Scholar PubMed PubMed Central

Uguzzoni, G., John Lovis, S., Oteri, F., Schug, A., Szurmant, H., and Weigt, M. (2017). Large-scale identification of coevolution signals across homo-oligomeric protein interfaces by direct coupling analysis. Proc. Natl. Acad. Sci. U.S.A. 114, E2662–E2671.10.1073/pnas.1615068114Suche in Google Scholar PubMed PubMed Central

Valley, C.C., Cembran, A., Perlmutter, J.D., Lewis, A.K., Labello, N.P., Gao, J., and Sachs, J.N. (2012). The methionine-aromatic motif plays a unique role in stabilizing protein structure. J. Biol. Chem. 287, 34979–34991.10.1074/jbc.M112.374504Suche in Google Scholar PubMed PubMed Central

Wang, C., Huang, R., He, B., and Du, Q. (2012). Improving the thermostability of alpha-amylase by combinatorial coevolving-site saturation mutagenesis. BMC Bioinf. 13, 263.10.1186/1471-2105-13-263Suche in Google Scholar PubMed PubMed Central

Weigt, M., White, R.A., Szurmant, H., Hoch, J.A., and Hwa, T. (2009). Identification of direct residue contacts in protein-protein interaction by message passing. Proc. Natl. Acad. Sci. U.S.A. 106, 67–72.10.1073/pnas.0805923106Suche in Google Scholar PubMed PubMed Central

Wilkins, M.R., Gasteiger, E., Bairoch, A., Sanchez, J.C., Williams, K.L., Appel, R.D., and Hochstrasser, D.F. (1999). Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 112, 531–552.10.1385/1-59259-584-7:531Suche in Google Scholar PubMed

Wu, F.Y. (1982). The Potts-Model. Rev. Mod. Phys. 54, 235–268.10.1142/9789812813893_0005Suche in Google Scholar

Xiao, H., Bao, Z., and Zhao, H. (2015). High throughput screening and selection methods for directed enzyme evolution. Ind. Eng. Chem. Res. 54, 4011–4020.10.1021/ie503060aSuche in Google Scholar PubMed PubMed Central

Zamost, B.L., Nielsen, H.K., and Starnes, R.L. (1991). Thermostable enzymes for industrial applications. J. Ind. Microbiol. 8, 71–81.10.1007/BF01578757Suche in Google Scholar

Zeiske, T., Stafford, K.A., and Palmer, A.G. (2016). Thermostability of enzymes from molecular dynamics simulations. J. Chem. Theory Comput. 12, 2489–2492.10.1021/acs.jctc.6b00120Suche in Google Scholar PubMed PubMed Central

Zerihun, M. and Schug, A. (2017). Biomolecular coevolution and its applications – going from structure prediction towards signaling, epistasis, and function. Biochem. Soc. Transact. 45, 1253–1261.10.1042/BST20170063Suche in Google Scholar PubMed

Received: 2019-02-12
Accepted: 2019-08-09
Published Online: 2019-08-31
Published in Print: 2019-11-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2019-0156/html
Button zum nach oben scrollen