An internally quenched peptide as a new model substrate for rhomboid intramembrane proteases
-
Elena Arutyunova
, Zhenze Jiang , Jian Yang , Ayodeji N. Kulepa , Howard S. Young , Steven Verhelst , Anthony J. O’Donoghueund M. Joanne Lemieux
Abstract
Rhomboids are ubiquitous intramembrane serine proteases that cleave transmembrane substrates. Their functions include growth factor signaling, mitochondrial homeostasis, and parasite invasion. A recent study revealed that the Escherichia coli rhomboid protease EcGlpG is essential for its extraintestinal pathogenic colonization within the gut. Crystal structures of EcGlpG and the Haemophilus influenzae rhomboid protease HiGlpG have deciphered an active site that is buried within the lipid bilayer but exposed to the aqueous environment via a cavity at the periplasmic face. A lack of physiological transmembrane substrates has hampered progression for understanding their catalytic mechanism and screening inhibitor libraries. To identify a soluble substrate for use in the study of rhomboid proteases, an array of internally quenched peptides were assayed with HiGlpG, EcGlpG and PsAarA from Providencia stuartti. One substrate was identified that was cleaved by all three rhomboid proteases, with HiGlpG having the highest cleavage efficiency. Mass spectrometry analysis determined that all enzymes hydrolyze this substrate between norvaline and tryptophan. Kinetic analysis in both detergent and bicellular systems demonstrated that this substrate can be cleaved in solution and in the lipid environment. The substrate was subsequently used to screen a panel of benzoxazin-4-one inhibitors to validate its use in inhibitor discovery.
Acknowledgments
Funding: M.J.L. gratefully acknowledges supported by grant MOP-93557, Funder Id: 10.13039/501100000030 from the Canadian Institutes of Health Research, Neuroscience and Mental Health Institute (Brad Mates Foundation), Parkinson Alberta, and the Department of Biochemistry, University of Alberta. M.J.L. was supported in part by funding from Alberta Innovates Health Solutions and the Parkinson’s Society of Canada. J.Y. acknowledges funding by a CSC scholarship. S.V. was supported in part by the Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen, the Senatsverwaltung für Wirtschaft, Technologie und Forschung des Landes Berlin and the Bundesministerium für Bildung und Forschung. A.J.O. gratefully acknowledges financial support from UC San Diego Skaggs School of Pharmacy and Pharmaceutical Science. H.S.Y. gratefully acknowledges support from the Heart and Stroke Foundation of Canada.
Conflict of interest statement: The authors declare that they have no conflicts of interest concerning the contents of this article.
References
Arutyunova, E., Panwar, P., Skiba, P.M., Gale, N., Mak, M.W., and Lemieux, M.J. (2014). Allosteric regulation of rhomboid intramembrane proteolysis. EMBO J. 33, 1869–1881.10.15252/embj.201488149Suche in Google Scholar PubMed PubMed Central
Arutyunova, E., Smithers, C.C., Corradi, V., Espiritu, A.C., Young, H.S., Tieleman, D.P., and Lemieux, M.J. (2016). Probing catalytic rate enhancement during intramembrane proteolysis. Biol. Chem. 397, 907–919.10.1515/hsz-2016-0124Suche in Google Scholar PubMed
Baker, R.P., Young, K., Feng, L., Shi, Y., and Urban, S. (2007). Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate. Proc. Natl. Acad. Sci. USA 104, 8257–8262.10.1073/pnas.0700814104Suche in Google Scholar PubMed PubMed Central
Boulware, K.T., Jabaiah, A., and Daugherty, P.S. (2010). Evolutionary optimization of peptide substrates for proteases that exhibit rapid hydrolysis kinetics. Biotechnol. Bioeng. 106, 339–346.10.1002/bit.22693Suche in Google Scholar PubMed
Brooks, C.L., Lazareno-Saez, C., Lamoureux, J.S., Mak, M.W., and Lemieux, M.J. (2011). Insights into substrate gating in H. influenzae rhomboid. J. Mol. Biol. 407, 687–697.10.1016/j.jmb.2011.01.046Suche in Google Scholar PubMed
Cho, S., Dickey, S.W., and Urban, S. (2016). Crystal structures and inhibition kinetics reveal a two-stage catalytic mechanism with drug design implications for rhomboid proteolysis. Mol. Cell. 61, 329–340.10.1016/j.molcel.2015.12.022Suche in Google Scholar PubMed PubMed Central
Debela, M., Magdolen, V., Schechter, N., Valachova, M., Lottspeich, F., Craik, C.S., Choe, Y., Bode, W., and Goettig, P. (2006). Specificity profiling of seven human tissue kallikreins reveals individual subsite preferences. J. Biol. Chem. 281, 25678–25688.10.1074/jbc.M602372200Suche in Google Scholar PubMed
Dickey, S.W., Baker, R.P., Cho, S., and Urban, S. (2013). Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity. Cell. 155, 1270–1281.10.1016/j.cell.2013.10.053Suche in Google Scholar PubMed PubMed Central
Drag, M. and Salvesen, G.S. (2010). Emerging principles in protease-based drug discovery. Nat. Rev. Drug Discov. 9, 690–701.10.1038/nrd3053Suche in Google Scholar PubMed PubMed Central
Durr, U.H., Gildenberg, M., and Ramamoorthy, A. (2012). The magic of bicelles lights up membrane protein structure. Chem. Rev. 112, 6054–6074.10.1021/cr300061wSuche in Google Scholar PubMed PubMed Central
Dusterhoft, S., Kunzel, U., and Freeman, M. (2017). Rhomboid proteases in human disease: mechanisms and future prospects. Biochim. Biophys. Acta 1864, 2200–2209.10.1016/j.bbamcr.2017.04.016Suche in Google Scholar PubMed
Erez, E. and Bibi, E. (2009). Cleavage of a multispanning membrane protein by an intramembrane serine protease. Biochemistry 48, 12314–12322.10.1021/bi901648gSuche in Google Scholar PubMed
Goel, P., Jumpertz, T., Ticha, A., Ogorek, I., Mikles, D.C., Hubalek, M., Pietrzik, C.U., Strisovsky, K., Schmidt, B., and Weggen, S. (2018). Discovery and validation of 2-styryl substituted benzoxazin-4-ones as a novel scaffold for rhomboid protease inhibitors. Bioorg. Med. Chem. Lett. 28, 1417–1422.10.1016/j.bmcl.2018.02.017Suche in Google Scholar PubMed
Golde, T.E., Wolfe, M.S., and Greenbaum, D.C. (2009). Signal peptide peptidases: a family of intramembrane-cleaving proteases that cleave type 2 transmembrane proteins. Semin. Cell. Dev. Biol. 20, 225–230.10.1016/j.semcdb.2009.02.003Suche in Google Scholar PubMed PubMed Central
Gonzalez Flecha, F.L. (2017). Kinetic stability of membrane proteins. Biophys. Rev. 9, 563–572.10.1007/s12551-017-0324-0Suche in Google Scholar PubMed PubMed Central
Goupil, L.S., Ivry, S.L., Hsieh, I., Suzuki, B.M., Craik, C.S., O’Donoghue, A.J., and McKerrow, J.H. (2016). Cysteine and aspartyl proteases contribute to protein digestion in the gut of freshwater planaria. PLoS Negl. Trop. Dis. 10, e0004893.10.1371/journal.pntd.0004893Suche in Google Scholar PubMed PubMed Central
Harris, J.L., Backes, B.J., Leonetti, F., Mahrus, S., Ellman, J.A., and Craik, C.S. (2000). Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc. Natl. Acad. Sci. USA 97, 7754–7759.10.1073/pnas.140132697Suche in Google Scholar PubMed PubMed Central
Hedstrom, L. (2002). An overview of serine proteases. Curr. Protoc. Protein Sci. Chapter 21, Unit 21.10.1–21.10.8.10.1002/0471140864.ps2110s26Suche in Google Scholar PubMed
Kasperkiewicz, P., Poreba, M., Snipas, S.J., Lin, S.J., Kirchhofer, D., Salvesen, G.S., and Drag, M. (2015). Design of a selective substrate and activity based probe for human neutrophil serine protease 4. PLoS One 10, e0132818.10.1371/journal.pone.0132818Suche in Google Scholar PubMed PubMed Central
Kateete, D.P., Katabazi, F.A., Okeng, A., Okee, M., Musinguzi, C., Asiimwe, B.B., Kyobe, S., Asiimwe, J., Boom, W.H., and Joloba, M.L. (2012). Rhomboids of Mycobacteria: characterization using an aarA mutant of Providencia stuartii and gene deletion in Mycobacterium smegmatis. PLoS One 7, e45741.10.1371/journal.pone.0045741Suche in Google Scholar PubMed PubMed Central
Langosch, D., Scharnagl, C., Steiner, H., and Lemberg, M.K. (2015). Understanding intramembrane proteolysis: from protein dynamics to reaction kinetics. Trends Biochem. Sci. 40, 318–327.10.1016/j.tibs.2015.04.001Suche in Google Scholar PubMed
Lazareno-Saez, C., Arutyunova, E., Coquelle, N., and Lemieux, M.J. (2013). Domain swapping in the cytoplasmic domain of the Escherichia coli rhomboid protease. J. Mol. Biol. 425, 1127–1142.10.1016/j.jmb.2013.01.019Suche in Google Scholar PubMed
Lee, J.R., Urban, S., Garvey, C.F., and Freeman, M. (2001). Regulated intracellular ligand transport and proteolysis control EGF signal activation in Drosophila. Cell 107, 161–171.10.1016/S0092-8674(01)00526-8Suche in Google Scholar
Lemieux, M.J., Reithmeier, R.A., and Wang, D.N. (2002). Importance of detergent and phospholipid in the crystallization of the human erythrocyte anion-exchanger membrane domain. J. Struct. Biol. 137, 322–332.10.1016/S1047-8477(02)00010-2Suche in Google Scholar
Lemieux, M.J., Fischer, S.J., Cherney, M.M., Bateman, K.S., and James, M.N. (2007). The crystal structure of the rhomboid peptidase from Haemophilus influenzae provides insight into intramembrane proteolysis. Proc. Natl. Acad. Sci. USA 104, 750–754.10.1073/pnas.0609981104Suche in Google Scholar PubMed PubMed Central
Li, H., Goh, B.N., Teh, W.K., Jiang, Z., Goh, J.P.Z., Goh, A., Wu, G., Hoon, S.S., Raida, M., Camattari, A., et al. (2018). Skin commensal Malassezia globosa secreted protease attenuates Staphylococcus aureus biofilm formation. J. Invest. Dermatol. 138, 1137–1145.10.1016/j.jid.2017.11.034Suche in Google Scholar PubMed
Lopez-Otin, C. and Bond, J.S. (2008). Proteases: multifunctional enzymes in life and disease. J. Biol. Chem. 283, 30433–30437.10.1074/jbc.R800035200Suche in Google Scholar PubMed PubMed Central
Maegawa, S., Ito, K., and Akiyama, Y. (2005). Proteolytic action of GlpG, a rhomboid protease in the Escherichia coli cytoplasmic membrane. Biochemistry 44, 13543–13552.10.1021/bi051363kSuche in Google Scholar PubMed
Manolaridis, I., Kulkarni, K., Dodd, R.B., Ogasawara, S., Zhang, Z., Bineva, G., O’Reilly, N., Hanrahan, S.J., Thompson, A.J., Cronin, N., et al. (2013). Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature 504, 301–305.10.1038/nature12754Suche in Google Scholar PubMed PubMed Central
Mesak, L.R., Mesak, F.M., and Dahl, M.K. (2004). Expression of a novel gene, gluP, is essential for normal Bacillus subtilis cell division and contributes to glucose export. BMC Microbiol. 4, 13.10.1186/1471-2180-4-13Suche in Google Scholar PubMed PubMed Central
Nagase, H., Fields, C.G., and Fields, G.B. (1994). Design and characterization of a fluorogenic substrate selectively hydrolyzed by stromelysin 1 (matrix metalloproteinase-3). J. Biol. Chem. 269, 20952–20957.10.1016/S0021-9258(17)31914-2Suche in Google Scholar
Panigrahi, R., Arutyunova, E., Panwar, P., Gimpl, K., Keller, S., and Lemieux, M.J. (2016). Reversible Unfolding of rhomboid intramembrane proteases. Biophys. J. 110, 1379–1390.10.1016/j.bpj.2016.01.032Suche in Google Scholar PubMed PubMed Central
Perona, J.J. and Craik, C.S. (1995). Structural basis of substrate specificity in the serine proteases. Protein. Sci. 4, 337–360.10.1002/pro.5560040301Suche in Google Scholar PubMed PubMed Central
Poreba, M., Salvesen, G.S., and Drag, M. (2017). Synthesis of a HyCoSuL peptide substrate library to dissect protease substrate specificity. Nat. Protoc. 12, 2189–2214.10.1038/nprot.2017.091Suche in Google Scholar PubMed
Powers, J.C., Asgian, J.L., Ekici, O.D., and James, K.E. (2002). Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev. 102, 4639–4750.10.1021/cr010182vSuche in Google Scholar PubMed
Rather, P.N., Ding, X., Baca-DeLancey, R.R., and Siddiqui, S. (1999). Providencia stuartii genes activated by cell-to-cell signaling and identification of a gene required for production or activity of an extracellular factor. J. Bacteriol. 181, 7185–7191.10.1128/JB.181.23.7185-7191.1999Suche in Google Scholar PubMed PubMed Central
Rawson, R.B. (2013). The site-2 protease. Biochim. Biophys. Acta 1828, 2801–2807.10.1016/j.bbamem.2013.03.031Suche in Google Scholar PubMed
Russell, C.W., Richards, A.C., Chang, A.S., and Mulvey, M.A. (2017). The rhomboid protease GlpG promotes the persistence of extraintestinal pathogenic Escherichia coli within the gut. Infect. Immun. 85, 1–15.10.1128/IAI.00866-16Suche in Google Scholar PubMed PubMed Central
Salisbury, C.M. and Ellman, J.A. (2006). Rapid identification of potent nonpeptidic serine protease inhibitors. Chem. Biochem. 7, 1034–1037.10.1002/cbic.200600081Suche in Google Scholar PubMed
Sherratt, A.R., Braganza, M.V., Nguyen, E., Ducat, T., and Goto, N.K. (2009). Insights into the effect of detergents on the full-length rhomboid protease from Pseudomonas aeruginosa and its cytosolic domain. Biochim. Biophys. Acta 1788, 2444–2453.10.1016/j.bbamem.2009.09.003Suche in Google Scholar PubMed
Stevenson, L.G., Strisovsky, K., Clemmer, K.M., Bhatt, S., Freeman, M., and Rather, P.N. (2007). Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase. Proc. Natl. Acad. Sci. USA 104, 1003–1008.10.1073/pnas.0608140104Suche in Google Scholar PubMed PubMed Central
Strisovsky, K. (2013). Structural and mechanistic principles of intramembrane proteolysis – lessons from rhomboids. FEBS J. 280, 1579–1603.10.1111/febs.12199Suche in Google Scholar PubMed
Strisovsky, K., Sharpe, H.J., and Freeman, M. (2009). Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates. Mol. Cell. 36, 1048–1059.10.1016/j.molcel.2009.11.006Suche in Google Scholar PubMed PubMed Central
Ticha, A., Stanchev, S., Skerle, J., Began, J., Ingr, M., Svehlova, K., Polovinkin, L., Ruzicka, M., Bednarova, L., Hadravova, R., et al. (2017). Sensitive versatile fluorogenic transmembrane peptide substrates for rhomboid intramembrane proteases. J. Biol. Chem. 292, 2703–2713.10.1074/jbc.M116.762849Suche in Google Scholar PubMed PubMed Central
Urban, S. and Dickey, S.W. (2011). The rhomboid protease family: a decade of progress on function and mechanism. Genome Biol. 12, 231.10.1186/gb-2011-12-10-231Suche in Google Scholar PubMed PubMed Central
Urban, S., Lee, J.R., and Freeman, M. (2001). Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107, 173–182.10.1016/S0092-8674(01)00525-6Suche in Google Scholar
Urban, S., Schlieper, D., and Freeman, M. (2002). Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr. Biol. 12, 1507–1512.10.1016/S0960-9822(02)01092-8Suche in Google Scholar PubMed
Vinothkumar, K.R. (2011). Structure of rhomboid protease in a lipid environment. J. Mol. Biol. 407, 232–247.10.1016/j.jmb.2011.01.029Suche in Google Scholar PubMed PubMed Central
Wang, Y. and Ha, Y. (2007). Open-cap conformation of intramembrane protease GlpG. Proc. Natl. Acad. Sci. USA 104, 2098–2102.10.1073/pnas.0611080104Suche in Google Scholar PubMed PubMed Central
Wang, Y., Zhang, Y., and Ha, Y. (2006). Crystal structure of a rhomboid family intramembrane protease. Nature 444, 1–5.10.1038/nature05255Suche in Google Scholar PubMed
Wolfe, M.S. (2009). Intramembrane-cleaving proteases. J. Biol. Chem. 284, 13969–13973.10.1074/jbc.R800039200Suche in Google Scholar PubMed PubMed Central
Xue, Y. and Ha, Y. (2012). Catalytic mechanism of rhomboid protease GlpG probed by 3,4-dichloroisocoumarin and diisopropyl fluorophosphonate. J. Biol. Chem. 287, 3099–3107.10.1074/jbc.M111.310482Suche in Google Scholar PubMed PubMed Central
Yang, J., Barniol-Xicota, M., Nguyen, M.T.N., Ticha, A., Strisovsky, K., and Verhelst, S.H.L. (2018). Benzoxazin-4-ones as novel, easily accessible inhibitors for rhomboid proteases. Bioorg. Med. Chem. Lett. 28, 1423–1427.10.1016/j.bmcl.2017.12.056Suche in Google Scholar PubMed
Zoll, S., Stanchev, S., Began, J., Skerle, J., Lepsik, M., Peclinovska, L., Majer, P., and Strisovsky, K. (2014). Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures. EMBO J. 33, 2408–2421.10.15252/embj.201489367Suche in Google Scholar PubMed PubMed Central
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0255).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Highlight: Frontiers in Proteolysis
- Host cell-surface proteins as substrates of gingipains, the main proteases of Porphyromonas gingivalis
- A single domain antibody against the Cys- and His-rich domain of PCSK9 and evolocumab exhibit different inhibition mechanisms in humanized PCSK9 mice
- Characterization of PdCP1, a serine carboxypeptidase from Pseudogymnoascus destructans, the causal agent of White-nose Syndrome
- An internally quenched peptide as a new model substrate for rhomboid intramembrane proteases
- An alternative processing pathway of APP reveals two distinct cleavage modes for rhomboid protease RHBDL4
- Reviews
- Salivary peptide histatin 1 mediated cell adhesion: a possible role in mesenchymal-epithelial transition and in pathologies
- Modulation of dynamin function by small molecules
- Chemotherapeutic resistance: a nano-mechanical point of view
- Research Articles/Short Communications
- Protein Structure and Function
- Biochemical and kinetic properties of the complex Roco G-protein cycle
- Cell Biology and Signaling
- Aberrant expression of hsa_circ_0025036 in lung adenocarcinoma and its potential roles in regulating cell proliferation and apoptosis
Artikel in diesem Heft
- Frontmatter
- Highlight: Frontiers in Proteolysis
- Host cell-surface proteins as substrates of gingipains, the main proteases of Porphyromonas gingivalis
- A single domain antibody against the Cys- and His-rich domain of PCSK9 and evolocumab exhibit different inhibition mechanisms in humanized PCSK9 mice
- Characterization of PdCP1, a serine carboxypeptidase from Pseudogymnoascus destructans, the causal agent of White-nose Syndrome
- An internally quenched peptide as a new model substrate for rhomboid intramembrane proteases
- An alternative processing pathway of APP reveals two distinct cleavage modes for rhomboid protease RHBDL4
- Reviews
- Salivary peptide histatin 1 mediated cell adhesion: a possible role in mesenchymal-epithelial transition and in pathologies
- Modulation of dynamin function by small molecules
- Chemotherapeutic resistance: a nano-mechanical point of view
- Research Articles/Short Communications
- Protein Structure and Function
- Biochemical and kinetic properties of the complex Roco G-protein cycle
- Cell Biology and Signaling
- Aberrant expression of hsa_circ_0025036 in lung adenocarcinoma and its potential roles in regulating cell proliferation and apoptosis