Salivary peptide histatin 1 mediated cell adhesion: a possible role in mesenchymal-epithelial transition and in pathologies
Abstract
Histatins are histidine-rich peptides present in the saliva of humans and higher primates and have been implicated in the protection of the oral cavity. Histatin 1 is one of the most abundant histatins and recent reports show that it has a stimulating effect on cellular adherence, thereby suggesting a role in maintaining the quality of the epithelial barrier and stimulating mesenchymal-to-epithelial transition. Here we summarize these findings and discuss them in the context of previous reports. The recent findings also provide new insights in the physiological functions of histatin 1, which are discussed here. Furthermore, we put forward a possible role of histatin 1 in various pathologies and its potential function in clinical applications.
Acknowledgments
The authors thank Jacob Aten, Department of Medical Biology, Academic Medical Center (AMC), University of Amsterdam, The Netherlands, for proofreading of the manuscript; Daisy Picavet and Wikky Tigchelaar, also affiliated with the AMC, for help with the immunohistochemistry; and Ton Bronckers, Academic Centre for Dentistry, Amsterdam, for providing the fetal tissue samples.
References
Balzac, F. (2005). E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function. J. Cell Sci. 118, 4765–4783.10.1242/jcs.02584Suche in Google Scholar
Baum, B.J., Bird, J.L., Millar, D.B., and Longton, R.W. (1976). Studies on histidine-rich polypeptides from human parotid saliva. Arch. Biochem. Biophys. 177, 427–436.10.1016/0003-9861(76)90455-0Suche in Google Scholar
Berglundh, T., Lindhe, J., Ericsson, I., Marinello, C.P., Liljenberg, B., and Thornsen, P. (1991). The soft tissue barrier at implants and teeth. Clin. Oral Implants Res. 2, 81–90.10.1034/j.1600-0501.1991.020206.xSuche in Google Scholar PubMed
Bhadbhade, S.J., Acharya, A.B., and Thakur, S.L. (2013). Salivary and gingival crevicular fluid histatin in periodontal health and disease. J. Clin. Exp. Dent. 5, 174–178.10.4317/jced.51106Suche in Google Scholar PubMed PubMed Central
Boink, M.A., Roffel, S., Nazmi, K., Van Montfrans, C., Bolscher, J.G.M., Gefen, A., Veerman, E.C.I., and Gibbs, S. (2016a). The influence of chronic wound extracts on inflammatory cytokine and histatin stability. PLoS One 11, 1–15.10.1371/journal.pone.0152613Suche in Google Scholar PubMed PubMed Central
Boink, M.A., Van den Broek, L.J., Roffel, S., Nazmi, K., Bolscher, J.G.M., Gefen, A., Veerman, E.C.I., and Gibbs, S. (2016b). Different wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells. Wound Repair Regen. 24, 100–109.10.1111/wrr.12380Suche in Google Scholar PubMed
Boink, M.A., Roffel, S., Nazmi, K., Bolscher, J.G.M., Veerman, E.C.I., and Gibbs, S. (2017). Saliva-derived host defense peptides histatin 1 and LL-37 increase secretion of antimicrobial skin and oral mucosa chemokine CCL20 in an IL-1α-independent manner. J. Immunol. Res. 2017, Article ID 3078194.10.1155/2017/3078194Suche in Google Scholar PubMed PubMed Central
Bosshardt, D.D. and Lang, N.P. (2005). The junctional epithelium: from health to disease. J. Dent. Res. 84, 9–20.10.1177/154405910508400102Suche in Google Scholar PubMed
Brånemark, P. (1959). Vital microscopy of bone marrow in rabbit. Scand. J. Clin. Lab. Invest. 38, 1–82.Suche in Google Scholar
Buser, D., Weber, H.P., Donath, K., Fiorellini, J.P., Paquette, D.W., and Williams, R.C. (1992). Soft tissue reactions to non-submerged unloaded titanium implants in beagle dogs. J. Periodontol. 63, 225–235.10.1902/jop.1992.63.3.225Suche in Google Scholar PubMed
Campos, M.I.D.C., Campos, C.N., Aarestrup, F.M., and Aarestrup, B.J.V. (2014). Oral mucositis in cancer treatment: natural history, prevention and treatment. Mol. Clin. Oncol. 2, 337–340.10.3892/mco.2014.253Suche in Google Scholar PubMed PubMed Central
Castagnola, M., Inzitari, R., Rossetti, D.V., Olmi, C., Cabras, T., Piras, V., Nicolussi, P., Sanna, M.T., Pellegrini, M., Giardina, B., et al. (2004). A cascade of 24 histatins (histatin 3 fragments) in human saliva: suggestions for a pre-secretory sequential cleavage pathway. J. Biol. Chem. 279, 41436–41443.10.1074/jbc.M404322200Suche in Google Scholar
Chen, X. and Gumbiner, B.M. (2006). Crosstalk between different adhesion molecules. Curr. Opin. Cell Biol. 18, 572–578.10.1016/j.ceb.2006.07.002Suche in Google Scholar
Dawes, C., Pedersen, A.M.L., Villa, A., Ekström, J., Proctor, G.B., Vissink, A., Aframian, D., McGowan, R., Aliko, A., Narayana, N., et al. (2015). The functions of human saliva: a review sponsored by the World Workshop on Oral Medicine VI. Arch. Oral Biol. 60, 863–874.10.1016/j.archoralbio.2015.03.004Suche in Google Scholar
De Craene, B. and Berx, G. (2013). Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 13, 97–110.10.1038/nrc3447Suche in Google Scholar
De Sousa-Pereira, P., Amado, F., Abrantes, J., Ferreira, R., Esteves, P.J., and Vitorino, R. (2013). An evolutionary perspective of mammal salivary peptide families: cystatins, histatins, statherin and PRPs. Arch. Oral Biol. 58, 451–458.10.1016/j.archoralbio.2012.12.011Suche in Google Scholar
Dethlefsen, L., McFall-Ngai, M., and Relman, D.A. (2007). An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449, 811–818.10.1038/nature06245Suche in Google Scholar
Driscoll, J., Zuo, Y., Xu, T., Choi, J.R., Troxler, R.F., and Oppenheim, F.G. (1995). Functional comparison of native and recombinant human salivary Histatin 1. J. Dent. Res. 74, 1837–1844.10.1177/00220345950740120601Suche in Google Scholar
Dvorak, H.F. (2015). Tumors: wounds that do not heal. Cancer Immunol. Res. 3, 1–11.10.1158/2326-6066.CIR-14-0209Suche in Google Scholar
Fosgerau, K. and Hoffmann, T. (2015). Peptide therapeutics: current status and future directions. Drug Discov. Today 20, 122–128.10.1016/j.drudis.2014.10.003Suche in Google Scholar
Frisch, S.M. and Screaton, R.A. (2001). Anoikis mechanisms. Curr. Opin. Cell Biol. 13, 555–562.10.1016/S0955-0674(00)00251-9Suche in Google Scholar
Gentile, P., Frongia, M.E., Cardellach, M., Miller, C.A., Stafford, G.P., Leggett, G.J., and Hatton, P.V. (2015). Functionalised nanoscale coatings using layer-by-layer assembly for imparting antibacterial properties to polylactide-co-glycolide surfaces. Acta Biomater. 21, 35–43.10.1016/j.actbio.2015.04.009Suche in Google Scholar
Grogan, J., McKnight, C.J., Troxler, R.F., and Oppenheim, F.G. (2001). Zinc and copper bind to unique sites of histatin 5. FEBS Lett. 491, 76–80.10.1016/S0014-5793(01)02157-3Suche in Google Scholar
Gumbiner, B.M. (1996). Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84, 345–357.10.1016/S0092-8674(00)81279-9Suche in Google Scholar
Gusman, H., Grogan, J., Kagan, H.M., Troxler, R.F., and Oppenheim, F.G. (2001a). Salivary histatin 5 is a potent competitive inhibitor of the cysteine proteinase clostripain. FEBS Lett. 489, 97–100.10.1016/S0014-5793(01)02077-4Suche in Google Scholar
Gusman, H., Lendenmann, U., Grogan, J., Troxler, R.F., and Oppenheim, F.G. (2001b). Is salivary histatin 5 a metallopeptide? Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1545, 86–95.10.1016/S0167-4838(00)00265-XSuche in Google Scholar
Gusman, H., Travis, J., Helmerhorst, E.J., Potempa, J., Troxler, R.F., and Oppenheim, F.G. (2001c). Salivary histatin 5 is an inhibitor of both host and bacterial enzymes implicated in periodontal disease. Infect. Immun. 69, 1402–1408.10.1128/IAI.69.3.1402-1408.2001Suche in Google Scholar
Hashimoto, T., Soeno, Y., Maeda, G., Taya, Y., Aoba, T., Nasu, M., Kawashiri, S., and Imai, K. (2012). Progression of oral squamous cell carcinoma accompanied with reduced E-cadherin expression but not cadherin switch. PLoS One 7, e47899.10.1371/journal.pone.0047899Suche in Google Scholar
Hidalgo, I.J., Raub, T.J., and Borchardt, R.T. (1989). Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96, 736–749.10.1016/S0016-5085(89)80072-1Suche in Google Scholar
Imatani, T., Kato, T., Minaguchi, K., and Okuda, K. (2000). Histatin 5 inhibits inflammatory cytokine induction from human gingival fibroblasts by Porphyromonas gingivalis. Oral Microbiol. Immunol. 15, 378–382.10.1034/j.1399-302x.2000.150607.xSuche in Google Scholar PubMed
Imatani, T., Kato, T., Okuda, K., and Yamashita, Y. (2004). Histatin 5 inhibits apoptosis in human gingival fibroblasts induced by Porphyromonas gingivalis cell-surface polysaccharide. Eur. J. Med. Res. 9, 528–532.Suche in Google Scholar
Isaacson, B. and Jeyapalina, S. (2014). Osseointegration: a review of the fundamentals for assuring cementless skeletal fixation. Orthop. Res. Rev. 6, 55–65.10.2147/ORR.S59274Suche in Google Scholar
Johnson, D.A., Yeh, C.K., and Dodds, M.W.J. (2000). Effect of donor age on the concentrations of histatins in human parotid and submandibular/sublingual saliva. Arch. Oral Biol. 45, 731–740.10.1016/S0003-9969(00)00047-9Suche in Google Scholar
Johnsson, M., Levine, M.J., and Nancollas, G.H. (1993). Hydroxyapatite binding domains in salivary proteins. Crit. Rev. Oral Biol. Med. 4, 371–378.10.1177/10454411930040031601Suche in Google Scholar PubMed
Kalluri, R. and Weinberg, R.A. (2009). The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428.10.1172/JCI39104Suche in Google Scholar PubMed PubMed Central
Khalili, A.A. and Ahmad, M.R. (2015). A review of cell adhesion studies for biomedical and biological applications. Int. J. Mol. Sci. 16, 18149–18184.10.3390/ijms160818149Suche in Google Scholar PubMed PubMed Central
Kościelniak, D., Jurczak, A., Sigmund, A., and Krzyściak, W. (2012). Salivary proteins in health and disease. Acta Biochim. Pol. 59, 451–457.10.18388/abp.2012_2077Suche in Google Scholar
Kudo, Y., Kitajima, S., Ogawa, I., Hiraoka, M., Sargolzaei, S., Keikhaee, M.R., Sato, S., Miyauchi, M., and Takata, T. (2004). Invasion and metastasis of oral cancer cells require methylation of E-cadherin and/or degradation of membranous β-catenin. Clin. Cancer Res. 10, 5455–5463.10.1158/1078-0432.CCR-04-0372Suche in Google Scholar PubMed
Larjava, H. (2013). Oral wound healing: an overview. In: Oral Wound Healing: Cell Biology and Clinical Management. H. Larjava, ed. (Hoboken, NJ: Wiley-Blackwell), pp. 1–10.10.1002/9781118704509.ch1Suche in Google Scholar
Larjava, H., Koivisto, L., Häkkinen, L., and Heino, J. (2011). Epithelial integrins with special reference to oral epithelia. J. Dent. Res. 90, 1367–1376.10.1177/0022034511402207Suche in Google Scholar PubMed PubMed Central
Lauritano, D., Petruzzi, M., Di Stasio, D., and Lucchese, A. (2014). Clinical effectiveness of palifermin in prevention and treatment of oral mucositis in children with acute lymphoblastic leukaemia: a case-control study. Int. J. Oral Sci. 6, 27–30.10.1038/ijos.2013.93Suche in Google Scholar PubMed PubMed Central
Le Beyec, J., Delers, F., Jourdant, F., Schreider, C., Chambaz, J., Cardot, P., and Pinçon- Raymond, M. (1997). A complete epithelial organization of Caco-2 cells induces I-FABP and potentializes apolipoprotein gene expression. Exp. Cell Res. 236, 311–320.10.1006/excr.1997.3734Suche in Google Scholar PubMed
Leite, R.S., Marlow, N.M., and Fernandes, J.K. (2013). Oral health and type 2 diabetes. Am. J. Med. Sci. 345, 271–273.10.1097/MAJ.0b013e31828bdedfSuche in Google Scholar PubMed PubMed Central
Leopold, P.L., Vincent, J., and Wang, H. (2012). A comparison of epithelial-to-mesenchymal transition and re-epithelialization. Semin. Cancer Biol. 22, 471–483.10.1016/j.semcancer.2012.07.003Suche in Google Scholar
Li, C.M., Guo, M., Borczuk, A., Powell, C.A., Wei, M., Thaker, H.M., Friedman, R., Klein, U., and Tycko, B. (2002). Gene expression in Wilms’ tumor mimics the earliest committed stage in the metanephric mesenchymal-epithelial transition. Am. J. Pathol. 160, 2181–2190.10.1016/S0002-9440(10)61166-2Suche in Google Scholar
Melino, S., Rufini, S., Sette, M., Morero, R., Grottesi, A., Paci, M., and Petruzzelli, R. (1999). Zn2+ ions selectively induce antimicrobial salivary peptide histatin-5 to fuse negatively charged vesicles. Identification and characterization of a zinc-binding motif present in the functional domain. Biochemistry 38, 9626–9633.10.1021/bi990212cSuche in Google Scholar PubMed
Melino, S., Gallo, M., Trotta, E., Mondello, F., Paci, M., and Petruzzelli, R. (2006). Metal binding and nuclease activity of an antimicrobial peptide analogue of the salivary histatin 5. Biochemistry 45, 15373–15383.10.1021/bi0615137Suche in Google Scholar PubMed
Messana, I., Cabras, T., Iavarone, F., Manconi, B., Huang, L., Martelli, C., Olianas, A., Sanna, M.T., Pisano, E., Sanna, M., et al. (2015). Chrono-proteomics of human saliva: variations of the salivary proteome during human development. J. Proteome Res. 14, 1666–1677.10.1021/pr501270xSuche in Google Scholar PubMed
Miyagawa, K., Kent, J., Schedl, A., van Heyningen, V., and Hastie, N.D. (1994). Wilms’ tumour – a case of disrupted development. J. Cell Sci. Suppl. 18, 1–5.10.1242/jcs.1994.Supplement_18.1Suche in Google Scholar PubMed
Mochon, A.B. and Liu, H. (2008). The antimicrobial peptide histatin-5 causes a spatially restricted disruption on the Candida albicans surface, allowing rapid entry of the peptide into the cytoplasm. PLoS Pathog. 4, e1000190.10.1371/journal.ppat.1000190Suche in Google Scholar PubMed PubMed Central
Naurato, N., Wong, P., Lu, Y., Wroblewski, K., and Bennick, A. (1999). Interaction of tannin with human salivary histatins. J. Agric. Food Chem. 47, 2229–2234.10.1021/jf981044iSuche in Google Scholar PubMed
Nieto, M.A., Huang, R.Y.Y.J., Jackson, R.A.A., and Thiery, J.P.P. (2016). EMT: 2016. Cell 166, 21–45.10.1016/j.cell.2016.06.028Suche in Google Scholar PubMed
Nieuw Amerongen, A.V. and Veerman, E.C.I. (2004). Saliva – the defender of the oral cavity. Oral Dis. 8, 12–22.10.1034/j.1601-0825.2002.1o816.xSuche in Google Scholar PubMed
Nishikata, M., Kanehira, T., Oh, H., Tani, H., Tazaki, M., and Kuboki, Y. (1991). Salivary histatin as an inhibitor of a protease produced by the oral bacterium Bacteroides gingivalis. Biochem. Biophys. Res. Commun. 174, 625–630.10.1016/0006-291X(91)91463-MSuche in Google Scholar
O’Brien-Simpson, N.M., Dashper, S.G., and Reynolds, E.C. (1998). Histatin 5 is a substrate and not an inhibitor of the Arg- and Lys-specific proteinases of Porphyromonas gingivalis. Biochem. Biophys. Res. Commun. 250, 474–478.10.1006/bbrc.1998.9318Suche in Google Scholar
Oppenheim, F.G., Yang, Y.C., Diamond, R.D., Hyslop, D., Offner, G.D., and Troxler, R.F. (1986). The primary structure and functional characterization of the neutral histidine rich polypeptide from human parotid secretion. J. Biol. Chem. 261, 1177–1182.10.1016/S0021-9258(17)36072-6Suche in Google Scholar
Oppenheim, F.G., Xu, T., McMillian, F.M., Levitz, S.M., Diamond, R.D., Offner, G.D., and Troxler, R.F. (1988). Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J. Biol. Chem. 263, 7472–7477.10.1016/S0021-9258(18)68522-9Suche in Google Scholar
Oudhoff, M.J., Bolscher, J.G.M., Nazmi, K., Kalay, H., van ’t Hof, W., Amerongen, A.V.N., and Veerman, E.C.I. (2008). Histatins are the major wound-closure stimulating factors in human saliva as identified in a cell culture assay. FASEB J. 22, 3805–3812.10.1096/fj.08-112003Suche in Google Scholar PubMed
Oudhoff, M.J., van den Keijbus, P.A.M., Kroeze, K.L., Nazmi, K., Gibbs, S., Bolscher, J.G.M., and Veerman, E.C.I. (2009a). Histatins enhance wound closure with oral and non-oral cells. J. Dent. Res. 88, 846–850.10.1177/0022034509342951Suche in Google Scholar PubMed
Oudhoff, M.J., Kroeze, K.L., Nazmi, K., van den Keijbus, P.A.M., van ’t Hof, W., Fernandez-Borja, M., Hordijk, P.L., Gibbs, S., Bolscher, J.G.M., and Veerman, E.C.I. (2009b). Structure-activity analysis of histatin, a potent wound healing peptide from human saliva: cyclization of histatin potentiates molar activity 1000-fold. FASEB J. 23, 3928–3935.10.1096/fj.09-137588Suche in Google Scholar PubMed
Peplow, P.V. and Chatterjee, M.P. (2013). A review of the influence of growth factors and cytokines in in vitro human keratinocyte migration. Cytokine 62, 1–21.10.1016/j.cyto.2013.02.015Suche in Google Scholar PubMed
Presland, R.B., Dale, B.A., Presland, R.B., and Dale, B.A. (2000). In oral biology & medicine epithelial structural proteins of the skin and oral cavity: function in health and disease. Crit. Rev. Oral Biol. Med. 11, 383–408.10.1177/10454411000110040101Suche in Google Scholar PubMed
Puisieux, A., Brabletz, T., and Caramel, J. (2014). Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol. 16, 488–494.10.1038/ncb2976Suche in Google Scholar PubMed
Reits, E., Neijssen, J., Herberts, C., Benckhuijsen, W., Janssen, L., Drijfhout, J.W., and Neefjes, J. (2004). A major role for TPPII in trimming proteasomal degradation products for MHC class I antigen presentation. Immunity 20, 495–506.10.1016/S1074-7613(04)00074-3Suche in Google Scholar
Sabatini, L.M. and Azen, E.A. (1989). Histatins, a family of salivary histidine-rich proteins, encoded by at least two loci (HIS1 and HIS2). Biochem. Biophys. Res. Commun. 160, 495–502.10.1016/0006-291X(89)92460-1Suche in Google Scholar
Sato, R., Semba, T., Saya, H., and Arima, Y. (2016). Concise review: stem cells and epithelial-mesenchymal transition in cancer: biological implications and therapeutic targets. Stem Cells 34, 1997–2007.10.1002/stem.2406Suche in Google Scholar PubMed
Schultz, G.S. and Wysocki, A. (2009). Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 17, 153–162.10.1111/j.1524-475X.2009.00466.xSuche in Google Scholar PubMed
Sculean, A., Gruber, R., and Bosshardt, D.D. (2014). Soft tissue wound healing around teeth and dental implants. J. Clin. Periodontol. 41, S6–S22.10.1111/jcpe.12206Suche in Google Scholar PubMed
Shah, D., Ali, M., Shukla, D., Jain, S., and Aakalu, V.K. (2017). Effects of histatin-1 peptide on human corneal epithelial cells. PLoS One 12, 1–15.10.1371/journal.pone.0178030Suche in Google Scholar PubMed PubMed Central
Siqueira, W.L., Margolis, H.C., Helmerhorst, E.J., Mendes, F.M., and Oppenheim, F.G. (2010). Evidence of intact histatins in the in vivo acquired enamel pellicle. J. Dent. Res. 89, 626–630.10.1177/0022034510363384Suche in Google Scholar PubMed PubMed Central
Stargardt, A., Gillis, J., Kamphuis, W., Wiemhoefer, A., Kooijman, L., Raspe, M., Benckhuijsen, W., Drijfhout, J.W., Hol, E.M., and Reits, E. (2013). Reduced amyloid-β degradation in early Alzheimer’s disease but not in the APPswePS1dE9 and 3xTg-AD mouse models. Aging Cell 12, 499–507.10.1111/acel.12074Suche in Google Scholar PubMed
Sume, S.S., Kantarci, A., Lee, A., Hasturk, H., and Trackman, P.C. (2010). Epithelial to mesenchymal transition in gingival overgrowth. Am. J. Pathol. 177, 208–218.10.2353/ajpath.2010.090952Suche in Google Scholar PubMed PubMed Central
Ten Cate, A.R. (1999). Oral Histology: Structure Development and Function (St. Louis, MO, USA: Elsevier).Suche in Google Scholar
Thiery, J.P. (2002). Epithelial–mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442–454.10.1038/nrc822Suche in Google Scholar PubMed
Thiery, J.P., Acloque, H., Huang, R.Y.J., and Nieto, M.A. (2009). Epithelial mesenchymal transitions in development and disease. Cell 139, 871–890.10.1016/j.cell.2009.11.007Suche in Google Scholar PubMed
Tillander, J., Hagberg, K., Hagberg, L., and Brånemark, R. (2010). Osseointegrated titanium implants for limb prostheses attachments: Infectious complications. Clin. Orthop. Relat. Res. 468, 2781–2788.10.1007/s11999-010-1370-0Suche in Google Scholar PubMed PubMed Central
Torres, P., Díaz, J., Arce, M., Silva, P., Mendoza, P., Lois, P., Molina-Berríos, A., Owen, G.I., Palma, V., and Torres, V.A. (2017). The salivary peptide histatin-1 promotes endothelial cell adhesion, migration, and angiogenesis. FASEB J. 31, 4946–4958.10.1096/fj.201700085RSuche in Google Scholar PubMed
Torres, P., Castro, M., Reyes, M., and Torres, V.A. (2018). Histatins, wound healing and cell migration. Oral Dis. 1–11. https://doi.org/10.1111/odi.12816.10.1111/odi.12816Suche in Google Scholar PubMed
Turner, J.R. (2009). Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809.10.1038/nri2653Suche in Google Scholar PubMed
Van Dijk, I.A., Nazmi, K., Bolscher, J.G.M., Veerman, E.C.I., and Stap, J. (2015). Histatin-1, a histidine-rich peptide in human saliva, promotes cell-substrate and cell-cell adhesion. FASEB J. 29, 3124–3132.10.1096/fj.14-266825Suche in Google Scholar PubMed
Van Dijk, I.A., Beker, A.F., Jellema, W., Nazmi, K., Wu, G., Wismeijer, D., Krawczyk, P.M., Bolscher, J.G.M., Veerman, E.C.I., and Stap, J. (2017a). Histatin 1 enhances cell adhesion to titanium in an implant integration model. J. Dent. Res. 96, 430–436.10.1177/0022034516681761Suche in Google Scholar PubMed
Van Dijk, I.A., Ferrando, M.L., Van der Wijk, A.E., Hoebe, R.A., Nazmi, K., De Jonge, W.J., Krawczyk, P.M., Bolscher, J.G.M., Veerman, E.C.I., and Stap, J. (2017b). Human salivary peptide histatin-1 stimulates epithelial and endothelial cell adhesion and barrier function. FASEB J. 31, 3922–3933.10.1096/fj.201700180RSuche in Google Scholar PubMed
Veerman, E.C.I., Valentijn-Benz, M., Nazmi, K., Ruissen, A.L.A., Walgreen-Weterings, E., Van Marle, J., Doust, A.B., van ‘t Hof, W., Bolscher, J.G.M., and Amerongen, A.V.N. (2007). Energy depletion protects Candida albicans against antimicrobial peptides by rigidifying its cell membrane. J. Biol. Chem. 282, 18831–18841.10.1074/jbc.M610555200Suche in Google Scholar PubMed
Wardill, H.R. and Bowen, J.M. (2013). Chemotherapy-induced mucosal barrier dysfunction: an updated review on the role of intestinal tight junctions. Curr. Opin. Support. Palliat. Care 7, 155–161.10.1097/SPC.0b013e32835f3e8cSuche in Google Scholar PubMed
Weber, G.F., Bjerke, M.A., and DeSimone, D.W. (2011). Integrins and cadherins join forces to form adhesive networks. J. Cell Sci. 124, 1183–1193.10.1242/jcs.064618Suche in Google Scholar
Welch-Reardon, K.M., Wu, N., and Hughes, C.C.W. (2015). A role for partial endothelial-mesenchymal transitions in angiogenesis? Arterioscler. Thromb. Vasc. Biol. 35, 303–308.10.1161/ATVBAHA.114.303220Suche in Google Scholar
Wetzel, F., Rönicke, S., Müller, K., Gyger, M., Rose, D., Zink, M., and Käs, J. (2011). Single cell viability and impact of heating by laser absorption. Eur. Biophys. J. 40, 1109–1114.10.1007/s00249-011-0723-2Suche in Google Scholar
Woichansky, I., Beretta, C.A., Berns, N., and Riechmann, V. (2016). Three mechanisms control E-cadherin localization to the zonula adherens. Nat. Commun. 7, 10834.10.1038/ncomms10834Suche in Google Scholar
Xu, T., Levitz, S.M., Diamond, R.D., and Oppenheim, F.G. (1991). Anticandidal activity of major human salivary histatins. Infect. Immun. 59, 2549–2554.10.1128/iai.59.8.2549-2554.1991Suche in Google Scholar
Xu, L., Lal, K., and Pollock, J.J. (1992). Histatins 2 and 4 are autoproteolytic degradation products of human parotid saliva. Oral Microbiol. Immunol. 7, 127–128.10.1111/j.1399-302X.1992.tb00524.xSuche in Google Scholar
Yaguchi, T. and Kawakami, Y. (2013). Diagnostic marker for malignant melanoma, pharmaceutical composition containing substance suppressing function of histatin-1 protein, and immunosuppressive agent. U.S. Patent Appl. Publ. Pub. No.: US 2013/0273653 A1.Suche in Google Scholar
Yan, Q. and Bennick, A. (1995). Identification of histatins as tannin-binding proteins in human saliva. Biochem. J. 311, 341–347.10.1042/bj3110341Suche in Google Scholar
Yin, A., Margolis, H.C., Grogan, J., Yao, Y., Troxler, R.F., and Oppenheim, F.G. (2003). Physical parameters of hydroxyapatite adsorption and effect on candidacidal activity of histatins. Arch. Oral Biol. 48, 361–368.10.1016/S0003-9969(03)00012-8Suche in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Highlight: Frontiers in Proteolysis
- Host cell-surface proteins as substrates of gingipains, the main proteases of Porphyromonas gingivalis
- A single domain antibody against the Cys- and His-rich domain of PCSK9 and evolocumab exhibit different inhibition mechanisms in humanized PCSK9 mice
- Characterization of PdCP1, a serine carboxypeptidase from Pseudogymnoascus destructans, the causal agent of White-nose Syndrome
- An internally quenched peptide as a new model substrate for rhomboid intramembrane proteases
- An alternative processing pathway of APP reveals two distinct cleavage modes for rhomboid protease RHBDL4
- Reviews
- Salivary peptide histatin 1 mediated cell adhesion: a possible role in mesenchymal-epithelial transition and in pathologies
- Modulation of dynamin function by small molecules
- Chemotherapeutic resistance: a nano-mechanical point of view
- Research Articles/Short Communications
- Protein Structure and Function
- Biochemical and kinetic properties of the complex Roco G-protein cycle
- Cell Biology and Signaling
- Aberrant expression of hsa_circ_0025036 in lung adenocarcinoma and its potential roles in regulating cell proliferation and apoptosis
Artikel in diesem Heft
- Frontmatter
- Highlight: Frontiers in Proteolysis
- Host cell-surface proteins as substrates of gingipains, the main proteases of Porphyromonas gingivalis
- A single domain antibody against the Cys- and His-rich domain of PCSK9 and evolocumab exhibit different inhibition mechanisms in humanized PCSK9 mice
- Characterization of PdCP1, a serine carboxypeptidase from Pseudogymnoascus destructans, the causal agent of White-nose Syndrome
- An internally quenched peptide as a new model substrate for rhomboid intramembrane proteases
- An alternative processing pathway of APP reveals two distinct cleavage modes for rhomboid protease RHBDL4
- Reviews
- Salivary peptide histatin 1 mediated cell adhesion: a possible role in mesenchymal-epithelial transition and in pathologies
- Modulation of dynamin function by small molecules
- Chemotherapeutic resistance: a nano-mechanical point of view
- Research Articles/Short Communications
- Protein Structure and Function
- Biochemical and kinetic properties of the complex Roco G-protein cycle
- Cell Biology and Signaling
- Aberrant expression of hsa_circ_0025036 in lung adenocarcinoma and its potential roles in regulating cell proliferation and apoptosis