Cold atmospheric plasma is a viable solution for treating orthopedic infection: a review
-
Ly Nguyen
Abstract
Bacterial infection and antibiotic resistance are major threats to human health and very few solutions are available to combat this eventuality. A growing number of studies indicate that cold (non-thermal) plasma treatment can be used to prevent or eliminate infection from bacteria, bacterial biofilms, fungi and viruses. Mechanistically, a cold plasma discharge is composed of high-energy electrons that generate short-lived reactive oxygen and nitrogen species which further react to form more stable compounds (NO2, H2O2, NH2Cl and others) depending on the gas mixture and plasma parameters. Cold plasma devices are being developed for medical applications including infection, cancer, plastic surgery applications and more. Thus, in this review we explore the potential utility of cold plasma as a non-antibiotic approach for treating post-surgical orthopedic infections.
Funding source: National Institutes of Health
Award Identifier / Grant number: RO1 AR069119
Funding statement: National Institutes of Health (Funder Id: 10.13039/100000002, Grant No: RO1 AR069119). National Institutes of Health’s funded under Award Numbers RO1 AR069119 and RO1 AR072513 were also used to support this work and for Dr. Bourke the Science Foundation Ireland under the Grant Number SFI/16/BBSRC/3391 and the BBSRC under Grant Reference BB/P008496/1.
References
Achermann, Y., Sahin, F., Schwyzer, H.K., Kolling, C., Wust, J. and Vogt, M. (2013). Characteristics and outcome of 16 periprosthetic shoulder joint infections. Infection 41, 613–620.10.1007/s15010-012-0360-4Suche in Google Scholar
Adeli, B. and Parvizi, J. (2012). Strategies for the prevention of periprosthetic joint infection. J. Bone Joint Surg. Br. 94, 42–46.10.1302/0301-620X.94B11.30833Suche in Google Scholar
Ahmad, R. and Ahsan, H. (2011). Contribution of peroxynitrite, a reactive nitrogen species, in the pathogenesis of autoimmunity. In: Autoimmune Disorders – Pathogenetic Aspects, C. Mavragani, ed. (Rijeka, Croatia: InTech), pp. 141–156.10.5772/20149Suche in Google Scholar
Alkawareek, M.Y., Gorman, S.P., Graham, W.G. and Gilmore, B.F. (2014). Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma. Int. J. Antimicrob. Agents 43, 154–160.10.1016/j.ijantimicag.2013.08.022Suche in Google Scholar
Antoci, V., Jr., King, S.B., Jose, B., Parvizi, J., Zeiger, A.R., Wickstrom, E., Freeman, T.A., Composto, R.J., Ducheyne, P., Shapiro, I.M., et al. (2007). Vancomycin covalently bonded to titanium alloy prevents bacterial colonization. J. Orthop. Res. 25, 858–866.10.1002/jor.20348Suche in Google Scholar
Atkins, B.L. and Bowler, I.C. (1998). The diagnosis of large joint sepsis. J. Hosp. Infect. 40, 263–274.10.1016/S0195-6701(98)90302-4Suche in Google Scholar
Babaeva, N.Y. and Kushner, M.J. (2010). Intracellular electric fields produced by dielectric barrier discharge treatment of skin. J. Phys. D Appl. Phys. 43, 185206 (185212pp).10.1088/0022-3727/43/18/185206Suche in Google Scholar
Bakkum-Gamez, J.N. and Dowdy, S.C. (2017). Improving surgical site infection rates through continuous quality improvement. Ann. Surg. Oncol. 24, 305–307.10.1245/s10434-016-5524-5Suche in Google Scholar PubMed
Banin, E., Hughes, D., and Kuipers, O.P. (2017). Bacterial pathogens, antibiotics and antibiotic resistance. FEMS Microbiol. Rev. 41, 450–452.10.1093/femsre/fux016Suche in Google Scholar PubMed
Bassett, C., Valdes, M.G., and Hernandez, E. (1982). Modification of fracture repair with selected pulsing electromagnetic fields. J. Bone Joint Surg. Am. 64, 888–895.10.2106/00004623-198264060-00012Suche in Google Scholar
Bauer, T.W., Parvizi, J., Kobayashi, N., and Krebs, V. (2006). Diagnosis of periprosthetic infection. J. Bone Joint Surg. Am. 88, 869–882.10.2106/JBJS.E.01149Suche in Google Scholar
Beattie, A.J., Gilbert, T.W., Guyot, J.P., Yates, A.J., and Badylak, S.F. (2008). Chemoattraction of progenitor cells by remodeling extracellular matrix scaffolds. Tissue Eng. A 15, 1119–1125.10.1089/ten.tea.2008.0162Suche in Google Scholar PubMed PubMed Central
Beebe, S.J., Blackmore, P.F., White, J., Joshi, R.P., and Schoenbach, K.H. (2004). Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms. Physiol. Meas. 25, 1077–1093.10.1088/0967-3334/25/4/023Suche in Google Scholar PubMed
Bekeschus, S., Kolata, J., Winterbourn, C., Kramer, A., Turner, R., Weltmann, K.D., Bröker, B., and Masur, K. (2014). Hydrogen peroxide: a central player in physical plasma-induced oxidative stress in human blood cells. Free Radic. Res. 48, 542–549.10.3109/10715762.2014.892937Suche in Google Scholar PubMed
Biedron, R., Konopinski, M.K., Marcinkiewicz, J., and Jozefowski, S. (2015). Oxidation by neutrophils-derived HOCl increases immunogenicity of proteins by converting them into ligands of several endocytic receptors involved in antigen uptake by dendritic cells and macrophages. PLoS One 10, e0123293.10.1371/journal.pone.0123293Suche in Google Scholar PubMed PubMed Central
Boekema, B.K.H.L., Hofmann, S., van Ham, B.J.T., Bruggeman, P.J., and Middelkoop, E. (2013). Antibacterial plasma at safe levels for skin cells. J. Phys. D Appl. Phys. 46, 422001.10.1088/0022-3727/46/42/422001Suche in Google Scholar
Bourke, P., Ziuzina, D., Han, L., Cullen, P.J., and Gilmore, B.F. (2017). Microbiological interactions with cold plasma. J. Appl. Microbiol. 123, 308–324.10.1111/jam.13429Suche in Google Scholar PubMed
Bozic, K.J. and Ries, M.D. (2005). The impact of infection after total hip arthroplasty on hospital and surgeon resource utilization. J. Bone Joint Surg. Am. 87, 1746–1751.10.2106/00004623-200508000-00012Suche in Google Scholar
Brighton, C.T., Hozack, W.J., Brager, M.D., Windsor, R.E., Pollack, S.R., Vreslovic, E.J., and Kotwick, J.E. (1985). Fracture healing in the rabbit fibula when subjected to various capacitively coupled electrical fields. J. Orthop. Res. 3, 331–340.10.1002/jor.1100030310Suche in Google Scholar PubMed
Brun, P., Brun, P., Vono, M., Venier, P., Tarricone, E., Deligianni, V., Martines, E., Zuin, M., Spagnolo, S., Cavazzana, R., et al. (2012). Disinfection of ocular cells and tissues by atmospheric-pressure cold plasma. PLoS One 7, e33245.10.1371/journal.pone.0033245Suche in Google Scholar PubMed PubMed Central
Brun, P., Pathak, S., Castagliuolo, I., Palù, G., Zuin, M., Cavazzana, R., and Martines, E. (2014). Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells. PLoS One 9, e104397.10.1371/journal.pone.0104397Suche in Google Scholar PubMed PubMed Central
Chernets, N., Kurpad, D.S., Alexeev, V., Rodrigues, D.B., and Freeman, T.A. (2015). Reaction chemistry generated by nanosecond pulsed dielectric barrier discharge treatment is responsible for the tumor eradication in the B16 melanoma mouse model. Plasma Processes Polym. 12, 1400–1409.10.1002/ppap.201500140Suche in Google Scholar PubMed PubMed Central
Chiang, C.L., Ledermann, J.A., Rad, A.N., Katz, D.R., and Chain, B.M. (2006). Hypochlorous acid enhances immunogenicity and uptake of allogeneic ovarian tumor cells by dendritic cells to cross-prime tumor-specific T cells. Cancer Immunol. Immunother. 55, 1384–1395.10.1007/s00262-006-0127-9Suche in Google Scholar
Chiang, C.L., Ledermann, J.A., Aitkens, E., Benjamin, E., Katz, D.R., and Chain, B.M. (2008). Oxidation of ovarian epithelial cancer cells by hypochlorous acid enhances immunogenicity and stimulates T cells that recognize autologous primary tumor. Clin. Cancer Res. 14, 4898–4907.10.1158/1078-0432.CCR-07-4899Suche in Google Scholar
Chiang, C.L., Kandalaft, L.E., Tanyi, J., Hagemann, A.R., Motz, G.T., Svoronos, N., Montone, K., Mantia-Smaldone, G.M., Smith, L., Nisenbaum, H.L., et al. (2013). A dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: from bench to bedside. Clin. Cancer Res. 19, 4801–4815.10.1158/1078-0432.CCR-13-1185Suche in Google Scholar
Choi, J.H., Song, Y.S., Song, K., Lee, H.J., Hong, J.W., and Kim, G.C. (2017). Skin renewal activity of non-thermal plasma through the activation of β-catenin in keratinocytes. Sci. Rep. 7, 6146.10.1038/s41598-017-06661-7Suche in Google Scholar
Corvec, S., Portillo, M.E., Pasticci, B.M., Borens, O., and Trampuz, A. (2012). Epidemiology and new developments in the diagnosis of prosthetic joint infection. Int. J. Artif. Organs 35, 923–934.10.5301/ijao.5000168Suche in Google Scholar
Dastgheyb, S.S. and Otto, M. (2015). Staphylococcal adaptation to diverse physiologic niches: an overview of transcriptomic and phenotypic changes in different biological environments. Future Microbiol. 10, 1981–1995.10.2217/fmb.15.116Suche in Google Scholar
Dastgheyb, S.S., Hammoud, S., Ketonis, C., Liu, A.Y., Fitzgerald, K., Parvizi, J., Purtill, J., Ciccotti, M., Shapiro, I.M., Otto, M., et al. (2015). Staphylococcal persistence due to biofilm formation in synovial fluid containing prophylactic cefazolin. Antimicrob. Agents Chemother. 59, 2122–2128.10.1128/AAC.04579-14Suche in Google Scholar
Davis, G.E., Bayless, K.J., Davis, M.J., and Meininger, G.A. (2000). Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am. J. Pathol. 156, 1489–1498.10.1016/S0002-9440(10)65020-1Suche in Google Scholar
de la Fuente-Nunez, C., Reffuveille, F., Fernandez, L., and Hancock, R.E. (2013). Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr. Opin. Microbiol. 16, 580–589.10.1016/j.mib.2013.06.013Suche in Google Scholar PubMed
de Mesy Bentley, K.L., Trombetta, R., Nishitani, K., Bello-Irizarry, S.N., Ninomiya, M., Zhang, L., Chung, H.L., McGrath, J.L., Daiss, J.L., Awad, H.A., et al. (2017). Evidence of Staphylococcus aureus deformation, proliferation, and migration in canaliculi of live cortical bone in murine models of osteomyelitis. J. Bone Miner. Res. 32, 985–990.10.1002/jbmr.3055Suche in Google Scholar PubMed PubMed Central
Eisenhauer, P., Chernets, N., Song, Y., Dobrynin, D., Pleshko, N., Steinbeck, M.J., and Freeman, T.A. (2016). Chemical modification of extracellular matrix by cold atmospheric plasma-generated reactive species affects chondrogenesis and bone formation. J. Tissue Eng. Regen. Med. 10, 772–782.10.1002/term.2224Suche in Google Scholar PubMed PubMed Central
Engemann, J.J., Carmeli, Y., Cosgrove, S.E., Fowler, V.G., Bronstein, M.Z., Trivette, S.L., Briggs, J.P., Sexton, D.J., and Kaye, K.S. (2003). Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin. Infect. Dis. 36, 592–598.10.1086/367653Suche in Google Scholar PubMed
Ermolaeva, S.A., Varfolomeev, A.F., Chernukha, M.Y., Yurov, D.S., Vasiliev, M.M., Kaminskaya, A.A., Moisenovich, M.M., Romanova, J.M., Murashev, A.N., and Selezneva, I.I. (2011). Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J. Med. Microbiol. 60, 75–83.10.1099/jmm.0.020263-0Suche in Google Scholar PubMed
Fluhr, J.W., Sassning, S., Lademann, O., Darvin, M.E., Schanzer, S., Kramer, A., Richter, H., Sterry, W., and Lademann, J. (2012). In vivo skin treatment with tissue-tolerable plasma influences skin physiology and antioxidant profile in human stratum corneum. Exp. Dermatol. 21, 130–134.10.1111/j.1600-0625.2011.01411.xSuche in Google Scholar PubMed
Flynn, P.B., Higginbotham, S., Alshraiedeh, N.H., Gorman, S.P., Graham, W.G., and Gilmore, B.F. (2015). Bactericidal efficacy of atmospheric pressure non-thermal plasma (APNTP) against the ESKAPE pathogens. Int. J. Antimicrob. Agents 46, 101–107.10.1016/j.ijantimicag.2015.02.026Suche in Google Scholar PubMed
Flynn, P.B., Busetti, A., Wielogorska, E., Chevallier, O.P., Elliott, C.T., Laverty, G., Gorman, S.P., Graham, W.G., and Gilmore, B.F. (2016). Non-thermal plasma exposure rapidly attenuates bacterial AHL-dependent quorum sensing and virulence. Sci. Rep. 6, 26320.10.1038/srep26320Suche in Google Scholar PubMed PubMed Central
Fredericks, D.C., Nepola, J.V., Baker, J.T., Abbott, J., and Simon, B. (2000). Effects of pulsed electromagnetic fields on bone healing in a rabbit tibial osteotomy model. J. Orthop. Trauma 14, 93–100.10.1097/00005131-200002000-00004Suche in Google Scholar PubMed
Gbejuade, H.O., Lovering, A.M., and Webb, J.C. (2015). The role of microbial biofilms in prosthetic joint infections. Acta Orthop. 86, 147–158.10.3109/17453674.2014.966290Suche in Google Scholar PubMed PubMed Central
Gentile, R.D. (2018). Cool atmospheric plasma (J-Plasma) and new options for facial contouring and skin rejuvenation of the heavy face and neck. Facial Plast. Surg. 34, 66–74.10.1055/s-0037-1621713Suche in Google Scholar PubMed
Ghobrial, G.M., Thakkar, V., Andrews, E., Lang, M., Chitale, A., Oppenlander, M.E., Maulucci, C.M., Sharan, A.D., Heller, J., Harrop, J.S., et al. (2014). Intraoperative vancomycin use in spinal surgery: single institution experience and microbial trends. Spine 39, 550–555.10.1097/BRS.0000000000000241Suche in Google Scholar PubMed
Gilmore, B.F., Flynn, P.B., O’Brien, S., Hickok, N., Freeman, T. and Bourke, P. (2018). Cold plasmas for biofilm control: opportunities and challenges. Trends Biotechnol. 36, 627–638.10.1016/j.tibtech.2018.03.007Suche in Google Scholar PubMed
Goodship, A. and Kenwright, J. (1985). The influence of induced micromovement upon the healing of experimental tibial fractures. J. Bone Joint Surg. Br. 67, 650–655.10.1302/0301-620X.67B4.4030869Suche in Google Scholar PubMed
Han, L., Patil, S., Boehm, D., Milosavljevic, V., Cullen, P.J., and Bourke, P. (2015). Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Appl. Environ. Microbiol. 82, 450–458.10.1128/AEM.02660-15Suche in Google Scholar PubMed PubMed Central
Hasse, S., Duong Tran, T., Hahn, O., Kindler, S., Metelmann, H.R., von Woedtke, T., and Masur, K. (2016). Induction of proliferation of basal epidermal keratinocytes by cold atmospheric-pressure plasma. Clin. Exp. Dermatol. 41, 202–209.10.1111/ced.12735Suche in Google Scholar PubMed
Heckman, J. (1994). Acceleration of tibial fracturehealing by non-invasive, low-intensity pulsed ultrasound. J. Bone Joint Surg. 76, 26–34.10.2106/00004623-199401000-00004Suche in Google Scholar PubMed
Hedequist, D., Hresko, T., and Proctor, M. (2008). Modern cervical spine instrumentation in children. Spine 33, 379–383.10.1097/BRS.0b013e318163f9cdSuche in Google Scholar PubMed
Hegde, C.V. (2013). The role of prophylactic antibiotics in preventing wound infection. J. Obstet. Gynaecol. India 63, 77–79.10.1007/s13224-013-0406-2Suche in Google Scholar PubMed PubMed Central
Heinlin, J., Zimmermann, J.L., Zeman, F., Bunk, W., Isbary, G., Landthaler, M., Maisch, T., Monetti, R., Morfill, G., Shimizu, T., et al. (2013). Randomized placebo-controlled human pilot study of cold atmospheric argon plasma on skin graft donor sites. Wound Repair Regen. 21, 800–807.10.1111/wrr.12078Suche in Google Scholar PubMed
Hilker, L., von Woedtke, T., Weltmann, K.D., and Wollert, H.G. (2017). Cold atmospheric plasma: a new tool for the treatment of superficial driveline infections. Eur. J. Cardiothorac. Surg. 51, 186–187.10.1093/ejcts/ezw212Suche in Google Scholar PubMed
Hung, Y.-W., Lee, L.-T., Peng, Y.-C., Chang, C.-T., Wong, Y.-K., and Tung, K.-C. (2016). Effect of a nonthermal-atmospheric pressure plasma jet on wound healing: an animal study. J. Chin. Med. Assoc. 79, 320–328.10.1016/j.jcma.2015.06.024Suche in Google Scholar PubMed
Isbary, G., Heinlin, J., Shimizu, T., Zimmermann, J.L., Morfill, G., Schmidt, H.U., Monetti, R., Steffes, B., Bunk, W., Li, Y., et al. (2012). Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br. J. Dermatol. 167, 404–410.10.1111/j.1365-2133.2012.10923.xSuche in Google Scholar PubMed PubMed Central
Joyce, M. and Bolander, M. (1992). Role of Transforming Growth Factor β. Bone Grafts and Bone Substitutes (Philadelphia, USA: Saunders), pp. 99.Suche in Google Scholar
Kenwright, J. and Goodship, A.E. (1989). Controlled mechanical stimulation in the treatment of tibial fractures. Clin. Orthop. Relat. Res. 241, 36–47.10.1097/00003086-198904000-00006Suche in Google Scholar
Kurtz, S.M., Lau, E., Ong, K.L., Carreon, L., Watson, H., Albert, T., and Glassman, S. (2012a). Infection risk for primary and revision instrumented lumbar spine fusion in the Medicare population. J. Neurosurg. Spine 17, 342–347.10.3171/2012.7.SPINE12203Suche in Google Scholar PubMed
Kurtz, S.M., Lau, E., Watson, H., Schmier, J.K., and Parvizi, J. (2012b). Economic burden of periprosthetic joint infection in the United States. J. Arthroplasty 27, 61–65 e61.10.1016/j.arth.2012.02.022Suche in Google Scholar PubMed
Lalli, T.A., Matthews, L.J., Hanselman, A.E., Hubbard, D.F., Bramer, M.A., and Santrock, R.D. (2015). Economic impact of syndesmosis hardware removal. Foot (Edinb.) 25, 131–133.10.1016/j.foot.2015.03.001Suche in Google Scholar PubMed
Lewis, K. (2008). Multidrug tolerance of biofilms and persister cells. Curr. Top. Microbiol. Immunol. 322, 107–131.10.1007/978-3-540-75418-3_6Suche in Google Scholar PubMed
Lu, P., Boehm, D., Bourke, P., and Cullen, P.J. (2017). Achieving reactive species specificity within plasma activated water through selective generation using air spark and glow discharges. Plasma Process. Polym. 14, 160–207.10.1002/ppap.201600207Suche in Google Scholar
Mai-Prochnow, A., Clauson, M., Hong, J., and Murphy, A.B. (2016). Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci. Rep. 6, 38610.10.1038/srep38610Suche in Google Scholar PubMed PubMed Central
Matthes, R., Hubner, N.O., Bender, C., Koban, I., Horn, S., Bekeschus, S., Weltmann, K.D., Kocher, T., Kramer, A., and Assadian, O. (2014). Efficacy of different carrier gases for barrier discharge plasma generation compared to chlorhexidine on the survival of Pseudomonas aeruginosa embedded in biofilm in vitro. Skin Pharmacol. Physiol. 27, 148–157.10.1159/000353861Suche in Google Scholar PubMed
Metelmann, H.-R., Vu, T.T., Do, H.T., Le, T.N.B., Hoang, T.H.A., Phi, T.T.T., Luong, T.M.L., Doan, V.T., Nguyen, T.T.H., Nguyen, T.H.M., et al. (2013). Scar formation of laser skin lesions after cold atmospheric pressure plasma (CAP) treatment: a clinical long term observation. Clin. Plasma Med. 1, 30–35.10.1016/j.cpme.2012.12.001Suche in Google Scholar
Mizuno, K., Yonetamari, K., Shirakawa, Y., Akiyama, T., and Ono, R. (2017). Anti-tumor immune response induced by nanosecond pulsed streamer discharge in mice. J. Phys. D Appl. Phys. 50, 12LT01.10.1088/1361-6463/aa5dbbSuche in Google Scholar
Mody, R.M., Zapor, M., Hartzell, J.D., Robben, P.M., Waterman, P., Wood-Morris, R., Trotta, R., Andersen, R.C., and Wortmann, G. (2009). Infectious complications of damage control orthopedics in war trauma. J. Trauma 67, 758–761.10.1097/TA.0b013e3181af6aa6Suche in Google Scholar PubMed
Naitali, M., Kamgang-Youbi, G., Herry, J.M., Bellon-Fontaine, M.N., and Brisset, J.L. (2010). Combined effects of long-living chemical species during microbial inactivation using atmospheric plasma-treated water. Appl. Environ. Microbiol. 76, 7662–7664.10.1128/AEM.01615-10Suche in Google Scholar PubMed PubMed Central
Pai Kedar, K., Singarapu, K., Jacob Jamey, D., and Madihally Sundararajan, V. (2015). Dose dependent selectivity and response of different types of mammalian cells to surface dielectric barrier discharge (SDBD) plasma. Plasma Process. Polym. 12, 666–677.10.1002/ppap.201400134Suche in Google Scholar
Parsa, M. (2015). Retroperitoneal dissection of ovarian endometrioma using J-Plasma technology. J. Minim. Invasive Gynecol. 22, S140.10.1016/j.jmig.2015.08.475Suche in Google Scholar PubMed
Parvizi, J., Erkocak, O.F., and Della Valle, C.J. (2014). Culture-negative periprosthetic joint infection. J. Bone Joint Surg. Am. 96, 430–436.10.2106/JBJS.L.01793Suche in Google Scholar PubMed
Pilla, A., Mont, M., Nasser, P., Khan, S., Figueiredo, M., Kaufman, J., and Siffert, R. (1990). Non-invasive low-intensity pulsed ultrasound accelerates bone healing in the rabbit. J. Orthop. Trauma 4, 246–253.10.1097/00005131-199004030-00002Suche in Google Scholar PubMed
Pull Ter Gunne, A.F., van Laarhoven, C.J., Hosman, A.J., and van Middendorp, J.J. (2013). Surgical infections. J. Neurosurg. Spine 18, 661–662.10.3171/2013.2.SPINE1386Suche in Google Scholar PubMed
Reing, J.E., Zhang, L., Myers-Irvin, J., Cordero, K.E., Freytes, D.O., Heber-Katz, E., Bedelbaeva, K., McIntosh, D., Dewilde, A., and Braunhut, S.J. (2008). Degradation products of extracellular matrix affect cell migration and proliferation. Tissue Eng. A 15, 605–614.10.1089/ten.tea.2007.0425Suche in Google Scholar PubMed
Schimmel, J.J., Horsting, P.P., de Kleuver, M., Wonders, G., and van Limbeek, J. (2010). Risk factors for deep surgical site infections after spinal fusion. Eur. Spine J. 19, 1711–1719.10.1007/s00586-010-1421-ySuche in Google Scholar PubMed PubMed Central
Schmidt, A., von Woedtke, T., Stenzel, J., Lindner, T., Polei, S., Vollmar, B., and Bekeschus, S. (2017a). One year follow-up risk assessment in SKH-1 mice and wounds treated with an argon plasma jet. Int. J. Mol. Sci 18, 868.10.3390/ijms18040868Suche in Google Scholar PubMed PubMed Central
Schmidt, K.E., Auschill, T.M., Heumann, C., Frankenberger, R., Eick, S., Sculean, A., and Arweiler, N.B. (2017b). Influence of different instrumentation modalities on the surface characteristics and biofilm formation on dental implant neck, in vitro. Clin. Oral Implants Res. 28, 483–490.10.1111/clr.12823Suche in Google Scholar PubMed
Shen, J., Tian, Y., Li, Y., Ma, R., Zhang, Q., Zhang, J., and Fang, J. (2016). Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Sci. Rep. 6, 28505.10.1038/srep28505Suche in Google Scholar PubMed PubMed Central
Shirtliff, M.E., Calhoun, J.H., and Mader, J.T. (2002). Experimental osteomyelitis treatment with antibiotic-impregnated hydroxyapatite. Clin. Orthop. Relat Res. 401, 239–247.10.1097/00003086-200208000-00027Suche in Google Scholar PubMed
Stoffels, E., Kieft, A.I.E., Sladek, A.R.E.J., Zandvoort, V., and Slaaf, D.W. (2008). Cold gas plasma in biology and medicine. In: Advanced Plasma Technology, R. d‘Agostino, P. Favia, Y. Kawai, H. Ikegami, N. Sato, F. Arefi‐Khonsari, eds. (Weinheim, Germany: Wiley-VCH), pp. 301–318.10.1002/9783527622184.ch16Suche in Google Scholar
Suzuki, K. and Yoshino, D. (2016). Proliferation-related activity in endothelial cells is enhanced by micropower plasma. BioMed. Res. Int. 2016, 11.10.1155/2016/4651265Suche in Google Scholar PubMed PubMed Central
Tande, A.J., Osmon, D.R., Greenwood-Quaintance, K.E., Mabry, T.M., Hanssen, A.D., and Patel, R. (2014). Clinical characteristics and outcomes of prosthetic joint infection caused by small colony variant staphylococci. MBio 5, e01910–01914.10.1128/mBio.01910-14Suche in Google Scholar PubMed PubMed Central
Tottey, S., Corselli, M., Jeffries, E.M., Londono, R., Peault, B., and Badylak, S.F. (2011). Extracellular matrix degradation products and low-oxygen conditions enhance the regenerative potential of perivascular stem cells. Tissue Eng. A 17, 37–44.10.1089/ten.tea.2010.0188Suche in Google Scholar PubMed PubMed Central
Trampuz, A. and Widmer, A.F. (2006). Infections associated with orthopedic implants. Curr. Opin. Infect Dis. 19, 349–356.10.1097/01.qco.0000235161.85925.e8Suche in Google Scholar PubMed
van der Linde, J., Liedtke, K.R., Matthes, R., Kramer, A., Heidecke, C.-D., and Partecke, L.I. (2017). Repeated cold atmospheric plasma application to intact skin does not cause sensitization in a standardized murine model. Plasma Med. 7, 383–393.10.1615/PlasmaMed.2017019167Suche in Google Scholar
Wende, K., Landsberg, K., Lindequist, U., Weltmann, K.D., and von Woedtke, T. (2010). Distinctive activity of a nonthermal atmospheric-pressure plasma jet on eukaryotic and prokaryotic cells in a cocultivation approach of keratinocytes and microorganisms. IEEE Trans. Plasma Sci. 38, 2479–2485.10.1109/TPS.2010.2052835Suche in Google Scholar
Wende, K., Williams, P., Dalluge, J., Gaens, W.V., Aboubakr, H., Bischof, J., von Woedtke, T., Goyal, S.M., Weltmann, K.D., Bogaerts, A., et al. (2015). Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet. Biointerphases 10, 029518.10.1116/1.4919710Suche in Google Scholar PubMed
Winter, J., Tresp, H., Hammer, M., Iseni, S., Kupsch, S., Schmidt-Bleker, A., Wende, K., Dünnbier, M., Masur, K., Weltmann, K.-D., et al. (2014). Tracking plasma generated H2O2 from gas into liquid phase and revealing its dominant impact on human skin cells. J. Phys. D Appl. Phys. 47, 285401.10.1088/0022-3727/47/28/285401Suche in Google Scholar
Winterbourn, C.C., Kettle, A.J., and Hampton, M.B. (2016). Reactive oxygen species and neutrophil function. Annu. Rev. Biochem. 85, 765–792.10.1146/annurev-biochem-060815-014442Suche in Google Scholar PubMed
Zimmermann, M., Udagedara, S.R., Sze, C.M., Ryan, T.M., Howlett, G.J., Xiao, Z., and Wedd, A.G. (2012). PcoE – a metal sponge expressed to the periplasm of copper resistance Escherichia coli. Implication of its function role in copper resistance. J. Inorg. Biochem. 115, 186–197.10.1016/j.jinorgbio.2012.04.009Suche in Google Scholar PubMed
Ziuzina, D., Patil, S., Cullen, P.J., Keener, K.M., and Bourke, P. (2014). Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol. 42, 109–116.10.1016/j.fm.2014.02.007Suche in Google Scholar PubMed
Ziuzina, D., Boehm, D., Patil, S., Cullen, P.J., and Bourke, P. (2015). Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS One 10, e0138209.10.1371/journal.pone.0138209Suche in Google Scholar PubMed PubMed Central
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Highlight Issue: Plasma Medicine
- Safety implications of plasma-induced effects in living cells – a review of in vitro and in vivo findings
- Chemistry and biochemistry of cold physical plasma derived reactive species in liquids
- Biological and medical applications of plasma-activated media, water and solutions
- Physical plasma and leukocytes – immune or reactive?
- Cold atmospheric plasma is a viable solution for treating orthopedic infection: a review
- Molecular mechanisms of non-thermal plasma-induced effects in cancer cells
- Total yield of reactive species originating from an atmospheric pressure plasma jet in real time
- Stimulation of melanin synthesis in melanoma cells by cold plasma
- Cold atmospheric plasma treatment inhibits growth in colorectal cancer cells
Artikel in diesem Heft
- Frontmatter
- Highlight Issue: Plasma Medicine
- Safety implications of plasma-induced effects in living cells – a review of in vitro and in vivo findings
- Chemistry and biochemistry of cold physical plasma derived reactive species in liquids
- Biological and medical applications of plasma-activated media, water and solutions
- Physical plasma and leukocytes – immune or reactive?
- Cold atmospheric plasma is a viable solution for treating orthopedic infection: a review
- Molecular mechanisms of non-thermal plasma-induced effects in cancer cells
- Total yield of reactive species originating from an atmospheric pressure plasma jet in real time
- Stimulation of melanin synthesis in melanoma cells by cold plasma
- Cold atmospheric plasma treatment inhibits growth in colorectal cancer cells