Biochemical and kinetic properties of the complex Roco G-protein cycle
-
Lina Wauters
, Wim Versées
and Arjan Kortholt
Abstract
Roco proteins have come into focus after mutations in the gene coding for the human Roco protein Leucine-rich repeat kinase 2 (LRRK2) were discovered to be one of the most common genetic causes of late onset Parkinson’s disease. Roco proteins are characterized by a Roc domain responsible for GTP binding and hydrolysis, followed by a COR dimerization device. The regulation and function of this RocCOR domain tandem is still not completely understood. To fully biochemically characterize Roco proteins, we performed a systematic survey of the kinetic properties of several Roco protein family members, including LRRK2. Together, our results show that Roco proteins have a unique G-protein cycle. Our results confirm that Roco proteins have a low nucleotide affinity in the micromolar range and thus do not strictly depend on G-nucleotide exchange factors. Measurement of multiple and single turnover reactions shows that neither Pi nor GDP release are rate-limiting, while this is the case for the GAP-mediated GTPase reaction of some small G-proteins like Ras and for most other high affinity Ras-like proteins, respectively. The KM values of the reactions are in the range of the physiological GTP concentration, suggesting that LRRK2 functioning might be regulated by the cellular GTP level.
Acknowledgments
We would like to thank H. Pots for the technical assistance. This research was supported by a VUB/UG collaboration agreement (OZR2544; L.W.), the Fonds voor Wetenschappelijk Onderzoek (M.L., W.V.), a Strategic Research Program Financing of the VUB (W.V.), The Michael J. Fox Foundation for Parkinson’s Research (A.K., W.V., C.J.G.), iMed (C.J.G) and a NWO-VIDI grant (A.K.).
References
Aasly, J.O., Vilariño-Güell, C., Dachsel, J.C., Webber, P.J., West, A.B., Haugarvoll, K., Johansen, K.K., Toft, M., Nutt, J.G., Payami, H., et al. (2010). Novel pathogenic LRRK2 p.Asn1437His substitution in familial Parkinson’s disease. Mov. Disord. 25, 2156–2163.10.1002/mds.23265Search in Google Scholar PubMed PubMed Central
Ahmadian, M.R., Hoffmann, U., Goody, R.S., and Wittinghofer, A. (1997). Individual rate constants for the interaction of Ras proteins with GTPase-activating proteins determined by fluorescence spectroscopy. Biochemistry 36, 4535–4541.10.1021/bi962556ySearch in Google Scholar PubMed
Berger, Z., Smith, K.A., and Lavoie, M.J. (2010). Membrane localization of LRRK2 is associated with increased formation of the highly active LRRK2 dimer and changes in its phosphorylation. Biochemistry 49, 5511–5523.10.1021/bi100157uSearch in Google Scholar PubMed PubMed Central
Binns, D.D., Helms, M.K., Barylko, B., Davis, C.T., Jameson, D.M., Albanesi, J.P., and Eccleston, J.F. (2000). The mechanism of GTP hydrolysis by dynamin II: a transient kinetic study. Biochemistry 39, 7188–7196.10.1021/bi000033rSearch in Google Scholar PubMed
Biosa, A., Trancikova, A., Civiero, L., Glauser, L., Bubacco, L., Greggio, E., and Moore, D.J. (2013). GTPase activity regulates kinase activity and cellular phenotypes of Parkinson’s disease-associated LRRK2. Hum. Mol. Genet. 22, 1140–1156.10.1093/hmg/dds522Search in Google Scholar PubMed
Bos, J.L., Rehmann, H., and Wittinghofer, A. (2007). GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865–877.10.1016/j.cell.2007.05.018Search in Google Scholar PubMed
Bosgraaf, L. and Van Haastert, P.J.M. (2003). Roc, a Ras/GTPase domain in complex proteins. Biochim. Biophys. Acta Mol. Cell Res. 1643, 5–10.10.1016/j.bbamcr.2003.08.008Search in Google Scholar PubMed
Chakrabarti, P.P., Suveyzdis, Y., Wittinghofer, A., and Gerwert, K. (2004). Fourier transform infrared spectroscopy on the Rap·RapGAP reaction, GTPase activation without an arginine finger. J. Biol. Chem. 279, 46226–46233.10.1074/jbc.M405603200Search in Google Scholar PubMed
Civiero, L., Vancraenenbroeck, R., Belluzzi, E., Beilina, A., Lobbestael, E., Reyniers, L., Gao, F., Micetic, I., De Maeyer, M., Bubacco, L., et al. (2012). Biochemical characterization of highly purified leucine-rich repeat kinases 1 and 2 demonstrates formation of homodimers. PLoS One 7, e43472.10.1371/journal.pone.0043472Search in Google Scholar PubMed PubMed Central
Deyaert, E., Wauters, L., Guaitoli, G., Konijnenberg, A., Leemans, M., Terheyden, S., Petrovic, A., Gallardo, R., Nederveen-Schippers, L.M., Athanasopoulos, P.S., et al. (2017). A homologue of the Parkinson’s disease-associated protein LRRK2 undergoes a monomer-dimer transition during GTP turnover. Nat. Commun. 8, 1008.10.1038/s41467-017-01103-4Search in Google Scholar PubMed PubMed Central
Dusonchet, J., Li, H., Guillily, M., Liu, M., Stafa, K., Derada Troletti, C., Boon, J.Y., Saha, S., Glauser, L., Mamais, A., et al. (2014). A Parkinson’s disease gene regulatory network identifies the signaling protein RGS2 as a modulator of LRRK2 activity and neuronal toxicity. Hum. Mol. Genet. 23, 4887–4905.10.1093/hmg/ddu202Search in Google Scholar PubMed PubMed Central
Eberth, A. and Ahmadian, M.R. (2009). In vitro GEF and GAP assays. Curr. Protoc. Cell Biol. 43, 1–25.10.1002/0471143030.cb1409s43Search in Google Scholar PubMed
Fislage, M., Wauters, L., and Versées, W. (2016). Invited review: MnmE, a GTPase that drives a complex tRNA modification reaction. Biopolymers 105, 568–579.10.1002/bip.22813Search in Google Scholar PubMed
Gandhi, P.N., Wang, X., Zhu, X., Chen, S.G., and Wilson-Delfosse, A.L. (2008). The Roc domain of leucine-rich repeat kinase 2 is sufficient for interaction with microtubules. J. Neurosci. Res. 86, 1711–1720.10.1002/jnr.21622Search in Google Scholar PubMed PubMed Central
Gasper, R., Meyer, S., Gotthardt, K., and Sirajuddin, M. (2009). It takes two to tango: regulation of G proteins by dimerization. Nat. Rev. Mol. Cell Biol. 10, 423–429.10.1038/nrm2689Search in Google Scholar PubMed
Gloeckner, C.J., Kinkl, N., Schumacher, A., Braun, R.J., O’Neill, E., Meitinger, T., Kolch, W., Prokisch, H., and Ueffing, M. (2006). The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum. Mol. Genet. 15, 223–232.10.1093/hmg/ddi439Search in Google Scholar PubMed
Gotthardt, K., Weyand, M., Kortholt, A., Van Haastert, P.J.M., and Wittinghofer, A. (2008). Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase. EMBO J. 27, 2239–2249.10.1038/emboj.2008.150Search in Google Scholar PubMed PubMed Central
Greggio, E., Jain, S., Kingsbury, A., Bandopadhyay, R., Lewis, P., Kaganovich, A., van der Brug, M.P., Beilina, A., Blackinton, J., Thomas, K.J., et al. (2006). Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol. Dis. 23, 329–341.10.1016/j.nbd.2006.04.001Search in Google Scholar PubMed
Guaitoli, G., Raimondi, F., Gilsbach, B.K., Gómez-Llorente, Y., Deyaert, E., Renzi, F., Li, X., Schaffner, A., Jagtap, P.K.A., Boldt, K., et al. (2016). Structural model of the dimeric Parkinson’s protein LRRK2 reveals a compact architecture involving distant interdomain contacts. Proc. Natl. Acad. Sci. USA 113, E4357–E4366.10.1073/pnas.1523708113Search in Google Scholar PubMed PubMed Central
Guo, L., Gandhi, P.N., Wang, W., Petersen, R.B., Wilson-Delfosse, A.L., and Chen, S.G. (2007). The Parkinson’s disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp. Cell Res. 313, 3658–3670.10.1016/j.yexcr.2007.07.007Search in Google Scholar PubMed PubMed Central
Haebig, K., Gloeckner, C.J., Miralles, M.G., Gillardon, F., Schulte, C., Riess, O., Ueffing, M., Biskup, S., and Bonin, M. (2010). ARHGEF7 (β-PIX) acts as guanine nucleotide exchange factor for leucine-rich repeat kinase 2. PLoS One 5, e13762.10.1371/journal.pone.0013762Search in Google Scholar PubMed PubMed Central
Ho, D.H., Jang, J., Joe, E., Son, I., Seo, H., and Seol, W. (2016). G2385R and I2020T mutations increase LRRK2 GTPase activity. Biomed Res. Int. 2016, 7917128.10.1155/2016/7917128Search in Google Scholar PubMed PubMed Central
Iancu, C.V., Borza, T., Fromm, H.J., and Honzatko, R.B. (2002). Feedback inhibition and product complexes of recombinant mouse muscle adenylosuccinate synthetase. J. Biol. Chem. 277, 40536–40543.10.1074/jbc.M204952200Search in Google Scholar PubMed
Ito, G., Okai, T., Fujino, G., Takeda, K., Ichijo, H., Katada, T., and Iwatsubo, T. (2007). GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson’s disease. Biochemistry 46, 1380–1388.10.1021/bi061960mSearch in Google Scholar PubMed
Jaleel, M., Nichols, R.J., Deak, M., Campbell, D.G., Gillardon, F., Knebel, A., and Alessi, D.R. (2007). LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson’s disease mutants affect kinase activity. Biochem. J. 405, 307–317.10.1042/BJ20070209Search in Google Scholar PubMed PubMed Central
James, N., Digman, M., Gratton, E., and Barylko, B. (2012). Number and brightness analysis of LRRK2 oligomerization in live cells. Biophys. J. 102, L41–L43.10.1016/j.bpj.2012.04.046Search in Google Scholar PubMed PubMed Central
John, J., Sohmen, R., Feuerstein, J., Linke, R., Wittinghofer, A., and Goody, R.S. (1990). Kinetics of interaction of nucleotides with nucleotide-free H-Ras p21. Biochemistry 29, 6058–6065.10.1021/bi00477a025Search in Google Scholar PubMed
Kotting, C., Kallenbach, A., Suveyzdis, Y., Wittinghofer, A., and Gerwert, K. (2008). The GAP arginine finger movement into the catalytic site of Ras increases the activation entropy. Proc. Natl. Acad. Sci. USA 105, 6260–6265.10.1073/pnas.0712095105Search in Google Scholar PubMed PubMed Central
Liao, J., Wu, C.-X., Burlak, C., Zhang, S., Sahm, H., Wang, M., Zhang, Z.-Y., Vogel, K.W., Federici, M., Riddle, S.M., et al. (2014). Parkinson disease-associated mutation R1441H in LRRK2 prolongs the “active state” of its GTPase domain. Proc. Natl. Acad. Sci. USA 111, 4055–4060.10.1073/pnas.1323285111Search in Google Scholar PubMed PubMed Central
Liu, Z., Bryant, N., Kumaran, R., Beilina, A., Abeliovich, A., Cookson, M.R., and West, A.B. (2018). LRRK2 phosphorylates membrane-bound Rabs and is activated by GTP-bound Rab7L1 to promote recruitment to the trans-Golgi network. Hum. Mol. Genet. 27, 385–395.10.1093/hmg/ddx410Search in Google Scholar PubMed PubMed Central
Luzón-Toro, B., Rubio de la Torre, E., Delgado, A., Pérez-Tur, J., and Hilfiker, S. (2007). Mechanistic insight into the dominant mode of the Parkinson’s disease-associated G2019S LRRK2 mutation. Hum. Mol. Genet. 16, 2031–2039.10.1093/hmg/ddm151Search in Google Scholar PubMed
Meyer, S., Wittinghofer, A., and Versées, W. (2009). G-domain dimerization orchestrates the tRNA wobble modification reaction in the MnmE/GidA complex. J. Mol. Biol. 392, 910–922.10.1016/j.jmb.2009.07.004Search in Google Scholar PubMed
Milburn, M.V., Tong, L., DeVos, A.M., Brünger, A., Yamaizumi, Z., Nishimura, S., and Kim, S.H. (1990). Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247, 939–945.10.1126/science.2406906Search in Google Scholar PubMed
Mills, R.D., Mulhern, T.D., Liu, F., Culvenor, J.G., and Cheng, H.-C. (2014). Prediction of the repeat domain structures and impact of Parkinsonism-associated variations on structure and function of all functional domains of leucine-rich repeat kinase 2 (LRRK2). Hum. Mutat. 2, 1–74.10.1002/humu.22515Search in Google Scholar PubMed
Nixon-abell, J., Berwick, D.C., and Harvey, K. (2016). L’RRK de Triomphe: a solution for LRRK2 GTPase activity? Biochem. Soc. Trans. 44, 1625–1634.10.1042/BST20160240Search in Google Scholar PubMed
Okafor, N. (2011). Environmental Microbiology of Aquatic and Waste Systems (Berlin, Germany: Springer).10.1007/978-94-007-1460-1Search in Google Scholar
Prado, S., Villarroya, M., Medina, M., and Armengod, M.-E. (2013). The tRNA-modifying function of MnmE is controlled by post-hydrolysis steps of its GTPase cycle. Nucleic Acids Res. 41, 6190–6208.10.1093/nar/gkt320Search in Google Scholar PubMed PubMed Central
Purlyte, E., Dhekne, H.S., Sarhan, A.R., Gomez, R., Lis, P., Wightman, M., Martinez, T.N., Tonelli, F., Pfeffer, S.R., and Alessi, D.R. (2018). Rab29 activation of the Parkinson’s disease-associated LRRK2 kinase. EMBO J. 37, 1–18.10.15252/embj.201798099Search in Google Scholar PubMed PubMed Central
Rudi, K., Ho, F.Y., Gilsbach, B.K., Pots, H., Wittinghofer, A., Kortholt, A., and Klare, J.P. (2015). Conformational heterogeneity of the Roc domains in C. tepidum Roc-COR and implications for human LRRK2 Parkinson mutations. Biosci. Rep. 35, e00254.10.1042/BSR20150128Search in Google Scholar PubMed PubMed Central
Schweins, T., Geyer, M., Scheffzek, K., Warshel, A., Kalbitzer, H.R., and Wittinghofer, A. (1995). Substrate-assisted catalysis as a mechanism for GTP hydrolysis of p21 and other GTP-binding proteins. Nat. Struct. Biol. 2, 36–44.10.1038/nsb0195-36Search in Google Scholar PubMed
Scrima, A. and Wittinghofer, A. (2006). Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element. EMBO J. 25, 2940–2951.10.1038/sj.emboj.7601171Search in Google Scholar PubMed PubMed Central
Sheng, Z., Zhang, S., Bustos, D., Kleinheinz, T., Le Pichon, C.E., Dominguez, S.L., Solanoy, H.O., Drummond, J., Zhang, X., Ding, X., et al. (2012). Ser1292 autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations. Sci. Transl. Med. 4, 164ra161.10.1126/scitranslmed.3004485Search in Google Scholar PubMed
Sirajuddin, M., Farkasovsky, M., Hauer, F., Kühlmann, D., Macara, I.G., Weyand, M., Stark, H., and Wittinghofer, A. (2007). Structural insight into filament formation by mammalian septins. Nature 449, 311–315.10.1038/nature06052Search in Google Scholar PubMed
Smith, W.W., Pei, Z., Jiang, H., Dawson, V.L., Dawson, T.M., and Ross, C.A. (2006). Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat. Neurosci. 9, 1231–1233.10.1038/nn1776Search in Google Scholar PubMed
Steger, M., Tonelli, F., Ito, G., Davies, P., Trost, M., Vetter, M., Wachter, S., Lorentzen, E., Duddy, G., Wilson, S., et al. (2016). Phosphoproteomics reveals that Parkinson’s disease kinase LRRK2 regulates a subset of Rab GTPases. eLife 5. Doi: 10.7554/eLife.12813.10.7554/eLife.12813Search in Google Scholar PubMed PubMed Central
Sumita, K., Lo, Y.-H., Takeuchi, K., Senda, M., Kofuji, S., Ikeda, A., Terakawa, J., Sasaki, M., Yoshino, H., Majd, N., et al. (2017). The lipid kinase PI5P4Kβ is an intracellular GTP sensor for metabolism and tumorigenesis. Mol. Cell 61, 187–198.10.1016/j.molcel.2015.12.011Search in Google Scholar PubMed PubMed Central
Sundal, C., Fujioka, S., Uitti, R.J., and Wszolek, Z.K. (2012). Autosomal dominant Parkinson’s disease. Parkinsonism Relat. Disord. 18, S7–S10.10.1016/S1353-8020(11)70005-0Search in Google Scholar PubMed
Taymans, J.-M., Vancraenenbroeck, R., Ollikainen, P., Beilina, A., Lobbestael, E., De Maeyer, M., Baekelandt, V., and Cookson, M.R. (2011). LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding. PLoS One 6, e23207.10.1371/journal.pone.0023207Search in Google Scholar PubMed PubMed Central
Terheyden, S., Ho, F.Y., Gilsbach, B.K., Wittinghofer, A., and Kortholt, A. (2015). Revisiting the Roco G-protein cycle. Biochem. J. 465, 139–147.10.1042/BJ20141095Search in Google Scholar PubMed
Traut, T.W. (1994). Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem. 140, 1–22.10.1007/BF00928361Search in Google Scholar PubMed
van Egmond, W.N., Kortholt, A., Plak, K., Bosgraaf, L., Bosgraaf, S., Keizer-Gunnink, I., and van Haastert, P.J.M. (2008). Intramolecular activation mechanism of the Dictyostelium LRRK2 homolog Roco protein GbpC. J. Biol. Chem. 283, 30412–30420.10.1074/jbc.M804265200Search in Google Scholar PubMed PubMed Central
Vetter, I.R. and Wittinghofer, A. (2001). The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304.10.1126/science.1062023Search in Google Scholar PubMed
West, A.B., Moore, D.J., Biskup, S., Bugayenko, A., Smith, W.W., Ross, C.A., Dawson, V.L., and Dawson, T.M. (2005). Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl. Acad. Sci. USA 102, 16842–16847.10.1073/pnas.0507360102Search in Google Scholar PubMed PubMed Central
West, A.B., Moore, D.J., Choi, C., Andrabi, S.A., Li, X., Dikeman, D., Biskup, S., Zhang, Z., Lim, K.-L., Dawson, V.L., et al. (2007). Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum. Mol. Genet. 16, 223–232.10.1093/hmg/ddl471Search in Google Scholar PubMed
Wittinghofer, A. and Vetter, I.R. (2011). Structure-function relationships of the G domain, a canonical switch motif. Annu. Rev. Biochem. 80, 943–971.10.1146/annurev-biochem-062708-134043Search in Google Scholar PubMed
Xiong, Y., Yuan, C., Chen, R., Dawson, T.M., and Dawson, V.L. (2012). ArfGAP1 is a GTPase activating protein for LRRK2: reciprocal regulation of ArfGAP1 by LRRK2. J. Neurosci. 32, 3877–3886.10.1523/JNEUROSCI.4566-11.2012Search in Google Scholar PubMed PubMed Central
Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., Kachergus, J., Hulihan, M., Uitti, R.J., Calne, D.B., et al. (2004). Mutations in LRRK2 cause autosomal-dominant Parkinsonism with pleomorphic pathology. Neuron 44, 601–607.10.1016/j.neuron.2004.11.005Search in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0227).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Highlight: Frontiers in Proteolysis
- Host cell-surface proteins as substrates of gingipains, the main proteases of Porphyromonas gingivalis
- A single domain antibody against the Cys- and His-rich domain of PCSK9 and evolocumab exhibit different inhibition mechanisms in humanized PCSK9 mice
- Characterization of PdCP1, a serine carboxypeptidase from Pseudogymnoascus destructans, the causal agent of White-nose Syndrome
- An internally quenched peptide as a new model substrate for rhomboid intramembrane proteases
- An alternative processing pathway of APP reveals two distinct cleavage modes for rhomboid protease RHBDL4
- Reviews
- Salivary peptide histatin 1 mediated cell adhesion: a possible role in mesenchymal-epithelial transition and in pathologies
- Modulation of dynamin function by small molecules
- Chemotherapeutic resistance: a nano-mechanical point of view
- Research Articles/Short Communications
- Protein Structure and Function
- Biochemical and kinetic properties of the complex Roco G-protein cycle
- Cell Biology and Signaling
- Aberrant expression of hsa_circ_0025036 in lung adenocarcinoma and its potential roles in regulating cell proliferation and apoptosis
Articles in the same Issue
- Frontmatter
- Highlight: Frontiers in Proteolysis
- Host cell-surface proteins as substrates of gingipains, the main proteases of Porphyromonas gingivalis
- A single domain antibody against the Cys- and His-rich domain of PCSK9 and evolocumab exhibit different inhibition mechanisms in humanized PCSK9 mice
- Characterization of PdCP1, a serine carboxypeptidase from Pseudogymnoascus destructans, the causal agent of White-nose Syndrome
- An internally quenched peptide as a new model substrate for rhomboid intramembrane proteases
- An alternative processing pathway of APP reveals two distinct cleavage modes for rhomboid protease RHBDL4
- Reviews
- Salivary peptide histatin 1 mediated cell adhesion: a possible role in mesenchymal-epithelial transition and in pathologies
- Modulation of dynamin function by small molecules
- Chemotherapeutic resistance: a nano-mechanical point of view
- Research Articles/Short Communications
- Protein Structure and Function
- Biochemical and kinetic properties of the complex Roco G-protein cycle
- Cell Biology and Signaling
- Aberrant expression of hsa_circ_0025036 in lung adenocarcinoma and its potential roles in regulating cell proliferation and apoptosis