Home Involvement of mitophagy in cisplatin-induced cell death regulation
Article
Licensed
Unlicensed Requires Authentication

Involvement of mitophagy in cisplatin-induced cell death regulation

  • Alibek Abdrakhmanov , Andrey V. Kulikov , Ekaterina A. Luchkina , Boris Zhivotovsky and Vladimir Gogvadze EMAIL logo
Published/Copyright: June 20, 2018

Abstract

Mitophagy, the selective degradation of mitochondria via the autophagic pathway, is a vital mechanism of mitochondrial quality control in cells. The removal of malfunctioning or damaged mitochondria is essential for normal cellular physiology and tissue development. Stimulation of mitochondrial permeabilization and release of proapoptotic factors from the intermembrane space is an essential step in triggering the mitochondrial pathway of cell death. In this study, we analyzed the extent to which mitophagy interferes with cell death, attenuating the efficiency of cancer therapy. We show that stimulation of mitophagy suppressed cisplatin-induced apoptosis, while mitophagy inhibition stimulates apoptosis and autophagy. Suppression of mitophagy involved production of reactive oxygen species, and the fate of cell was dependent on the interplay between endoplasmic reticulum stress and autophagy.

Award Identifier / Grant number: 14-25-00056

Funding statement: We thank Prof. Bert Vogelstein for HCT116 cells. This work was supported by Russian Science Foundation, Funder Id: 10.13039/501100006769 (grant number 14-25-00056). The work in the authors’ laboratories is being supported by the Stockholm, Funder Id: 10.13039/501100007231 (grant number 161292) and Swedish, Funder Id: 10.13039/501100002794 (grant number 160733) Cancer Societies, the Swedish Childhood Cancer Foundation, Funder Id: 10.13039/501100006313 (grant number PR2016-0090), the Swedish Research Council, Funder Id: 10.13039/501100004359 (grant number 521-2014-2258).

  1. Conflict of interest statement: The authors declare that there is no conflict of interest regarding the publication of this article.

References

Archer, S.L. (2014). Mitochondrial fission and fusion in human diseases. N. Engl. J. Med. 370, 1074.10.1056/NEJMc1316254Search in Google Scholar

Azad, M.B., Chen, Y., and Gibson, S.B. (2009). Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid. Redox. Signal. 11, 777–790.10.1089/ars.2008.2270Search in Google Scholar PubMed

Bin-Umer, M.A., McLaughlin, J.E., Butterly, M.S., McCormick, S., and Tumer, N.E. (2014). Elimination of damaged mitochondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes. Proc. Natl. Acad. Sci. USA 111, 11798–11803.10.1073/pnas.1403145111Search in Google Scholar PubMed PubMed Central

Bordt, E.A., Clerc, P., Roelofs, B.A., Saladino, A.J., Tretter, L., Adam-Vizi, V., Cherok, E., Khalil, A., Yadava, N., Ge, S.X., et al. (2017). The putative Drp1 Inhibitor mdivi-1 is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species. Dev. Cell. 40, 583–594 e586.10.1016/j.devcel.2017.02.020Search in Google Scholar PubMed PubMed Central

Bravo, R., Vicencio, J.M., Parra, V., Troncoso, R., Munoz, J.P., Bui, M., Quiroga, C., Rodriguez, A.E., Verdejo, H.E., Ferreira, J., et al. (2011). Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J. Cell. Sci. 124, 2143–2152.10.1242/jcs.080762Search in Google Scholar PubMed PubMed Central

Burman, J.L., Pickles, S., Wang, C., Sekine, S., Vargas, J.N.S., Zhang, Z., Youle, A.M., Nezich, C.L., Wu, X., Hammer, J.A., et al. (2017). Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J. Cell. Biol. 216, 3231–3247.10.1083/jcb.201612106Search in Google Scholar PubMed PubMed Central

Cao, S.S. and Kaufman, R.J. (2014). Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid. Redox. Signal. 21, 396–413.10.1089/ars.2014.5851Search in Google Scholar PubMed PubMed Central

Chong, W.C., Shastri, M.D., and Eri, R. (2017). Endoplasmic reticulum stress and oxidative stress: a vicious nexus implicated in bowel disease pathophysiology. Int. J. Mol. Sci. 18, pii: E771.10.3390/ijms18040771Search in Google Scholar PubMed PubMed Central

Das, D.N., Naik, P.P., Mukhopadhyay, S., Panda, P.K., Sinha, N., Meher, B.R., and Bhutia, S.K. (2017). Elimination of dysfunctional mitochondria through mitophagy suppresses benzo[a]pyrene-induced apoptosis. Free Radic. Biol. Med. 112, 452–463.10.1016/j.freeradbiomed.2017.08.020Search in Google Scholar PubMed

Frank, M., Duvezin-Caubet, S., Koob, S., Occhipinti, A., Jagasia, R., Petcherski, A., Ruonala, M.O., Priault, M., Salin, B., and Reichert, A.S. (2012). Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim. Biophys. Acta. 1823, 2297–2310.10.1016/j.bbamcr.2012.08.007Search in Google Scholar PubMed

Gao, J., Wang, L., Liu, J., Xie, F., Su, B., and Wang, X. (2017). Abnormalities of mitochondrial dynamics in neurodegenerative diseases. Antioxidants (Basel) 6, pii: E25.10.3390/antiox6020025Search in Google Scholar PubMed PubMed Central

Gomes, L.C., Di Benedetto, G., and Scorrano, L. (2011). During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell. Biol. 13, 589–598.10.1038/ncb2220Search in Google Scholar PubMed PubMed Central

Greene, A.W., Grenier, K., Aguileta, M.A., Muise, S., Farazifard, R., Haque, M.E., McBride, H.M., Park, D.S., and Fon, E.A. (2012). Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep. 13, 378–385.10.1038/embor.2012.14Search in Google Scholar PubMed PubMed Central

Jezek, J., Cooper, K.F., and Strich, R. (2018). Reactive oxygen species and mitochondrial dynamics: the yin and yang of mitochondrial dysfunction and cancer progression. Antioxidants (Basel) 7, pii: E13.10.3390/antiox7010013Search in Google Scholar

Kim, I., Xu, W., and Reed, J.C. (2008). Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 7, 1013–1030.10.1038/nrd2755Search in Google Scholar PubMed

Kubli, D.A. and Gustafsson, A.B. (2012). Mitochondria and mitophagy: the yin and yang of cell death control. Circ. Res. 111, 1208–1221.10.1161/CIRCRESAHA.112.265819Search in Google Scholar PubMed PubMed Central

Meira Martins, L.A., Vieira, M.Q., Ilha, M., de Vasconcelos, M., Biehl, H.B., Lima, D.B., Schein, V., Barbe-Tuana, F., Borojevic, R., and Guma, F.C. (2015). The interplay between apoptosis, mitophagy and mitochondrial biogenesis induced by resveratrol can determine activated hepatic stellate cells death or survival. Cell Biochem. Biophys. 71, 657–672.10.1007/s12013-014-0245-5Search in Google Scholar PubMed

Mendl, N., Occhipinti, A., Muller, M., Wild, P., Dikic, I., and Reichert, A.S. (2011). Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene WHI2. J. Cell Sci. 124, 1339–1350.10.1242/jcs.076406Search in Google Scholar PubMed

Ni, H.M., Williams, J.A., and Ding, W.X. (2015). Mitochondrial dynamics and mitochondrial quality control. Redox. Biol. 4, 6–13.10.1016/j.redox.2014.11.006Search in Google Scholar PubMed PubMed Central

Nicholls, D.G. (1974). The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur. J. Biochem. 50, 305–315.10.1111/j.1432-1033.1974.tb03899.xSearch in Google Scholar PubMed

Ong, S.B. and Hausenloy, D.J. (2017). Mitochondrial dynamics as a therapeutic target for treating cardiac diseases. Handb. Exp. Pharmacol. 240, 251–279.10.1007/164_2016_7Search in Google Scholar PubMed

Radogna, F., Cerella, C., Gaigneaux, A., Christov, C., Dicato, M., and Diederich, M. (2016). Cell type-dependent ROS and mitophagy response leads to apoptosis or necroptosis in neuroblastoma. Oncogene 35, 3839–3853.10.1038/onc.2015.455Search in Google Scholar PubMed

Rambold, A.S., Kostelecky, B., Elia, N., and Lippincott-Schwartz, J. (2011). Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. USA 108, 10190–10195.10.1073/pnas.1107402108Search in Google Scholar PubMed PubMed Central

Scott, I. and Youle, R.J. (2010). Mitochondrial fission and fusion. Essays Biochem. 47, 85–98.10.1042/bse0470085Search in Google Scholar PubMed PubMed Central

Senft, D. and Ronai, Z.A. (2015). UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem. Sci. 40, 141–148.10.1016/j.tibs.2015.01.002Search in Google Scholar PubMed PubMed Central

Sorokina, I.V., Denisenko, T.V., Imreh, G., Tyurin-Kuzmin, P.A., Kaminskyy, V.O., Gogvadze, V., and Zhivotovsky, B. (2017). Involvement of autophagy in the outcome of mitotic catastrophe. Sci. Rep. 7, 14571.10.1038/s41598-017-14901-zSearch in Google Scholar PubMed PubMed Central

Szegezdi, E., Logue, S.E., Gorman, A.M., and Samali, A. (2006). Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 7, 880–885.10.1038/sj.embor.7400779Search in Google Scholar PubMed PubMed Central

Tanaka, A., Cleland, M.M., Xu, S., Narendra, D.P., Suen, D.F., Karbowski, M., and Youle, R.J. (2010). Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191, 1367–1380.10.1083/jcb.201007013Search in Google Scholar PubMed PubMed Central

Twig, G. and Shirihai, O.S. (2011). The interplay between mitochondrial dynamics and mitophagy. Antioxid. Redox. Signal. 14, 1939–1951.10.1089/ars.2010.3779Search in Google Scholar PubMed PubMed Central

Twig, G., Elorza, A., Molina, A.J., Mohamed, H., Wikstrom, J.D., Walzer, G., Stiles, L., Haigh, S.E., Katz, S., Las, G., et al. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446.10.1038/sj.emboj.7601963Search in Google Scholar PubMed PubMed Central

Verfaillie, T., Garg, A.D., and Agostinis, P. (2013). Targeting ER stress induced apoptosis and inflammation in cancer. Cancer Lett. 332, 249–264.10.1016/j.canlet.2010.07.016Search in Google Scholar PubMed

Villa, E., Proics, E., Rubio-Patino, C., Obba, S., Zunino, B., Bossowski, J.P., Rozier, R.M., Chiche, J., Mondragon, L., Riley, J.S., et al. (2017). Parkin-independent mitophagy controls chemotherapeutic response in cancer cells. Cell Rep. 20, 2846–2859.10.1016/j.celrep.2017.08.087Search in Google Scholar PubMed

Yamashita, S.I., Jin, X., Furukawa, K., Hamasaki, M., Nezu, A., Otera, H., Saigusa, T., Yoshimori, T., Sakai, Y., Mihara, K., et al. (2016). Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy. J. Cell Biol. 215, 649–665.10.1083/jcb.201605093Search in Google Scholar PubMed PubMed Central

Zhou, J., Li, G., Zheng, Y., Shen, H.M., Hu, X., Ming, Q.L., Huang, C., Li, P., and Gao, N. (2015). A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission. Autophagy 11, 1259–1279.10.1080/15548627.2015.1056970Search in Google Scholar PubMed PubMed Central

Zhou, H., Zhu, P., Guo, J., Hu, N., Wang, S., Li, D., Hu, S., Ren, J., Cao, F., and Chen, Y. (2017). Ripk3 induces mitochondrial apoptosis via inhibition of FUNDC1 mitophagy in cardiac IR injury. Redox Biol. 13, 498–507.10.1016/j.redox.2017.07.007Search in Google Scholar PubMed PubMed Central

Received: 2018-04-06
Accepted: 2018-06-14
Published Online: 2018-06-20
Published in Print: 2019-01-28

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2018-0210/html
Scroll to top button