Home Life Sciences The role of acid sphingomyelinase and modulation of sphingolipid metabolism in bacterial infection
Article
Licensed
Unlicensed Requires Authentication

The role of acid sphingomyelinase and modulation of sphingolipid metabolism in bacterial infection

  • Alexander Simonis and Alexandra Schubert-Unkmeir EMAIL logo
Published/Copyright: July 20, 2018

Abstract

Acid sphingomyelinase (ASM) is a key enzyme in sphingolipid metabolism that converts sphingomyelin to ceramide, thereby modulating membrane structures and signal transduction. Bacterial pathogens can manipulate ASM activity and function, and use host sphingolipids during multiple steps of their infection process. An increase in ceramides upon infection results in the formation of ceramide-enriched membrane platforms that serve to cluster receptor molecules and organize intracellular signaling molecules, thus facilitating bacterial uptake. In this review, we focus on how extracellular bacterial pathogens target ASM and modulate membrane properties and signaling pathways to gain entry into eukaryotic cells or induce cell death. We describe how intracellular pathogens interfere with the intralysosomal functions of ASM to favor replication and survival. In addition, bacteria utilize their own sphingomyelinases as virulence factors to modulate sphingolipid metabolism. The potential of ASM as a target for treating bacterial infections is also discussed.

Acknowledgments

The authors thank their respective laboratory members and researchers whose work has not been discussed in detail or reviewed elsewhere. The work presented here from Dr. Schubert-Unkmeir’s laboratory is supported by funding from the German research foundation (Funder ID: 10.13039/501100001659, grant nos. SCHU2394/2-1 and SCHU2394/2-2).

  1. Conflict of interest statement: The authors declare that there are no conflicts of interest.

References

Becker, K.A., Fahsel, B., Kemper, H., Mayeres, J., Li, C., Wilker, B., Keitsch, S., Soddemann, M., Sehl, C., Kohnen, M., et al. (2018). Staphylococcus aureus α-toxin disrupts endothelial-cell tight junctions via acid sphingomyelinase and ceramide. Infect. Immun. 86, e00606–e00617.10.1128/IAI.00606-17Search in Google Scholar PubMed PubMed Central

Bock, J., Szabo, I., Jekle, A., and Gulbins, E. (2002). Actinomycin D-induced apoptosis involves the potassium channel Kv1.3. Biochem. Biophys. Res. Commun. 295, 526–531.10.1016/S0006-291X(02)00695-2Search in Google Scholar PubMed

Brady, R.O., Kanfer, J.N., Mock, M.B., and Fredrickson, D.S. (1966). The metabolism of sphingomyelin. II. Evidence of an enzymatic deficiency in Niemann-Pick disease. Proc. Natl. Acad. Sci. USA 55, 366–369.10.1073/pnas.55.2.366Search in Google Scholar PubMed PubMed Central

Burgert, A., Schlegel, J., Becam, J., Doose, S., Bieberich, E., Schubert-Unkmeir, A., and Sauer, M. (2017). Characterization of plasma membrane ceramides by super-resolution microscopy. Angew. Chem. Int. Ed. 56, 6131–6135.10.1002/anie.201700570Search in Google Scholar PubMed PubMed Central

Cartwright, K.A., Stuart, J.M., Jones, D.M., and Noah, N.D. (1987). The Stonehouse survey: nasopharyngeal carriage of meningococci and Neisseria lactamica. Epidemiol. Infect. 99, 591–601.10.1017/S0950268800066449Search in Google Scholar PubMed PubMed Central

Caugant, D.A. (2008). Genetics and evolution of Neisseria meningitidis: importance for the epidemiology of meningococcal disease. Infect. Genet. Evol. 8, 558–565.10.1016/j.meegid.2008.04.002Search in Google Scholar PubMed

Caugant, D.A. and Maiden, M.C.J. (2009). Meningococcal carriage and disease – population biology and evolution. Vaccine 27, 64–70.10.1016/j.vaccine.2009.04.061Search in Google Scholar PubMed PubMed Central

Charruyer, A., Grazide, S., Bezombes, C., Muller, S., Laurent, G., and Jaffrezou, J.P. (2005). UV-C light induces raft-associated acid sphingomyelinase and JNK activation and translocation independently on a nuclear signal. J. Biol. Chem. 280, 19196–19204.10.1074/jbc.M412867200Search in Google Scholar PubMed

Chernomordik, L.V. and Kozlov, M.M. (2003). Protein-lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem. 72, 175–207.10.1146/annurev.biochem.72.121801.161504Search in Google Scholar PubMed

Chernomordik, L.V. and Kozlov, M.M. (2008). Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 15, 675–683.10.1038/nsmb.1455Search in Google Scholar PubMed PubMed Central

Chiantia, S., Ries, J., Chwastek, G., Carrer, D., Li, Z., Bittman, R., and Schwille, P. (2008). Role of ceramide in membrane protein organization investigated by combined AFM and FCS. Biochim. Biophys. Acta 1778, 1356–1364.10.1016/j.bbamem.2008.02.008Search in Google Scholar PubMed

Claus, H., Maiden, M.C., Wilson, D.J., McCarthy, N.D., Jolley, K.A., Urwin, R., Hessler, F., Frosch, M., and Vogel, U. (2005a). Genetic analysis of meningococci carried by children and young adults. J. Infect. Dis. 191, 1263–1271.10.1086/428590Search in Google Scholar PubMed

Claus, R.A., Bunck, A.C., Bockmeyer, C.L., Brunkhorst, F.M., Losche, W., Kinscherf, R., and Deigner, H.P. (2005b). Role of increased sphingomyelinase activity in apoptosis and organ failure of patients with severe sepsis. FASEB J. 19, 1719–1721.10.1096/fj.04-2842fjeSearch in Google Scholar PubMed

Cohen, R. and Barenholz, Y. (1978). Correlation between the thermotropic behavior of sphingomyelin liposomes and sphingomyelin hydrolysis by sphingomyelinase of Staphylococcus aureus. Biochim. Biophys. Acta 509, 181–187.10.1016/0005-2736(78)90018-4Search in Google Scholar PubMed

Dautry-Varsat, A., Subtil, A., and Hackstadt, T. (2005). Recent insights into the mechanisms of Chlamydia entry. Cell. Microbiol. 7, 1714–1722.10.1111/j.1462-5822.2005.00627.xSearch in Google Scholar PubMed

de Bentzmann, S., Roger, P., Dupuit, F., Bajolet-Laudinat, O., Fuchey, C., Plotkowski, M.C., and Puchelle, E. (1996). Asialo GM1 is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelial cells. Infect. Immun. 64, 1582–1588.10.1128/iai.64.5.1582-1588.1996Search in Google Scholar PubMed PubMed Central

Derre, I., Swiss, R., and Agaisse, H. (2011). The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites. PLoS Pathog. 7, e1002092.10.1371/journal.ppat.1002092Search in Google Scholar PubMed PubMed Central

Dumitru, C.A., Zhang, Y., Li, X., and Gulbins, E. (2007). Ceramide: a novel player in reactive oxygen species-induced signaling? Antioxid. Redox Signal. 9, 1535–1540.10.1089/ars.2007.1692Search in Google Scholar PubMed

Duncan, J.A. and Canna, S.W. (2018). The NLRC4 inflammasome. Immunol. Rev. 281, 115–123.10.1111/imr.12607Search in Google Scholar PubMed PubMed Central

Edelmann, B., Bertsch, U., Tchikov, V., Winoto-Morbach, S., Perrotta, C., Jakob, M., Adam-Klages, S., Kabelitz, D., and Schutze, S. (2011). Caspase-8 and caspase-7 sequentially mediate proteolytic activation of acid sphingomyelinase in TNF-R1 receptosomes. EMBO J. 30, 379–394.10.1038/emboj.2010.326Search in Google Scholar PubMed PubMed Central

Eramo, A., Sargiacomo, M., Ricci-Vitiani, L., Todaro, M., Stassi, G., Messina, C.G., Parolini, I., Lotti, F., Sette, G., Peschle, C., et al. (2004). CD95 death-inducing signaling complex formation and internalization occur in lipid rafts of type I and type II cells. Eur. J. Immunol. 34, 1930–1940.10.1002/eji.200324786Search in Google Scholar PubMed

Esen, M., Schreiner, B., Jendrossek, V., Lang, F., Fassbender, K., Grassme, H., and Gulbins, E. (2001). Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis 6, 431–439.10.1023/A:1012445925628Search in Google Scholar

Faulstich, M., Hagen, F., Avota, E., Kozjak-Pavlovic, V., Winkler, A.C., Xian, Y., Schneider-Schaulies, S., and Rudel, T. (2015). Neutral sphingomyelinase 2 is a key factor for PorB-dependent invasion of Neisseria gonorrhoeae. Cell. Microbiol. 17, 241–253.10.1111/cmi.12361Search in Google Scholar PubMed

Flores-Diaz, M., Monturiol-Gross, L., Naylor, C., Alape-Giron, A., and Flieger, A. (2016). Bacterial sphingomyelinases and phospholipases as virulence factors. Microbiol. Mol. Biol. Rev. 80, 597–628.10.1128/MMBR.00082-15Search in Google Scholar PubMed PubMed Central

Garcia-Barros, M., Paris, F., Cordon-Cardo, C., Lyden, D., Rafii, S., Haimovitz-Friedman, A., Fuks, Z., and Kolesnick, R. (2003). Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300, 1155–1159.10.1126/science.1082504Search in Google Scholar PubMed

Gautreau, A., Oguievetskaia, K., and Ungermann, C. (2014). Function and regulation of the endosomal fusion and fission machineries. Cold Spring Harb. Perspect. Biol. 6, a016832.10.1101/cshperspect.a016832Search in Google Scholar PubMed PubMed Central

Goni, F.M. and Alonso, A. (2002). Sphingomyelinases: enzymology and membrane activity. FEBS Lett. 531, 38–46.10.1016/S0014-5793(02)03482-8Search in Google Scholar PubMed

Gonzalez-Zorn, B., Dominguez-Bernal, G., Suarez, M., Ripio, M.T., Vega, Y., Novella, S., and Vazquez-Boland, J.A. (1999). The smcL gene of Listeria ivanovii encodes a sphingomyelinase C that mediates bacterial escape from the phagocytic vacuole. Mol. Microbiol. 33, 510–523.10.1046/j.1365-2958.1999.01486.xSearch in Google Scholar PubMed

Gorelik, A., Illes, K., Heinz, L.X., Superti-Furga, G., and Nagar, B. (2016). Crystal structure of mammalian acid sphingomyelinase. Nat. Commun. 7, 12196.10.1038/ncomms12196Search in Google Scholar PubMed PubMed Central

Grassme, H., Gulbins, E., Brenner, B., Ferlinz, K., Sandhoff, K., Harzer, K., Lang, F., and Meyer, T.F. (1997). Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell 91, 605–615.10.1016/S0092-8674(00)80448-1Search in Google Scholar

Grassme, H., Henry, B., Ziobro, R., Becker, K.A., Riethmuller, J., Gardner, A., Seitz, A.P., Steinmann, J., Lang, S., Ward, C., et al. (2017). β1-Integrin accumulates in cystic fibrosis luminal airway epithelial membranes and decreases sphingosine, promoting bacterial infections. Cell Host Microbe 21, 707–718.10.1016/j.chom.2017.05.001Search in Google Scholar PubMed PubMed Central

Grassme, H., Jekle, A., Riehle, A., Schwarz, H., Berger, J., Sandhoff, K., Kolesnick, R., and Gulbins, E. (2001). CD95 signaling via ceramide-rich membrane rafts. J. Biol. Chem. 276, 20589–20596.10.1074/jbc.M101207200Search in Google Scholar PubMed

Grassme, H., Jendrossek, V., Bock, J., Riehle, A., and Gulbins, E. (2002). Ceramide-rich membrane rafts mediate CD40 clustering. J. Immunol. 168, 298–307.10.4049/jimmunol.168.1.298Search in Google Scholar PubMed

Grassme, H., Jendrossek, V., Riehle, A., von Kurthy, G., Berger, J., Schwarz, H., Weller, M., Kolesnick, R., and Gulbins, E. (2003). Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat. Med. 9, 322–330.10.1038/nm823Search in Google Scholar PubMed

Gulbins, E. and Kolesnick, R. (2003). Raft ceramide in molecular medicine. Oncogene 22, 7070–7077.10.1038/sj.onc.1207146Search in Google Scholar PubMed

Hackstadt, T., Scidmore, M.A., and Rockey, D.D. (1995). Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc. Natl. Acad. Sci. USA 92, 4877–4881.10.1073/pnas.92.11.4877Search in Google Scholar PubMed PubMed Central

Hannun, Y.A. and Obeid, L.M. (2008). Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell. Biol. 9, 139–150.10.1038/nrm2329Search in Google Scholar PubMed

Hauck, C.R., Grassme, H., Bock, J., Jendrossek, V., Ferlinz, K., Meyer, T.F., and Gulbins, E. (2000). Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae. FEBS Lett. 478, 260–266.10.1016/S0014-5793(00)01851-2Search in Google Scholar PubMed

Heinrich, M., Wickel, M., Schneider-Brachert, W., Sandberg, C., Gahr, J., Schwandner, R., Weber, T., Saftig, P., Peters, C., Brunner, J., et al. (1999). Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J. 18, 5252–5263.10.1093/emboj/18.19.5252Search in Google Scholar PubMed PubMed Central

Heinrich, M., Wickel, M., Winoto-Morbach, S., Schneider-Brachert, W., Weber, T., Brunner, J., Saftig, P., Peters, C., Kronke, M., and Schutze, S. (2000). Ceramide as an activator lipid of cathepsin D. Adv. Exp. Med. Biol. 477, 305–315.10.1007/0-306-46826-3_33Search in Google Scholar PubMed

Herrera, A., Kulhankova, K., Sonkar, V.K., Dayal, S., Klingelhutz, A.J., Salgado-Pabon, W., and Schlievert, P.M. (2017). Staphylococcal β-toxin modulates human aortic endothelial cell and platelet function through sphingomyelinase and biofilm ligase activities. MBio 8, e00273–e00217.10.1128/mBio.00273-17Search in Google Scholar PubMed PubMed Central

Holopainen, J.M., Subramanian, M., and Kinnunen, P.K. (1998). Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry 37, 17562–17570.10.1021/bi980915eSearch in Google Scholar PubMed

Huseby, M., Shi, K., Brown, C.K., Digre, J., Mengistu, F., Seo, K.S., Bohach, G.A., Schlievert, P.M., Ohlendorf, D.H., and Earhart, C.A. (2007). Structure and biological activities of β toxin from Staphylococcus aureus. J. Bacteriol. 189, 8719–8726.10.1128/JB.00741-07Search in Google Scholar PubMed PubMed Central

Inoshima, I., Inoshima, N., Wilke, G.A., Powers, M.E., Frank, K.M., Wang, Y., and Bubeck Wardenburg, J. (2011). A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat. Med. 17, 1310–1314.10.1038/nm.2451Search in Google Scholar PubMed PubMed Central

Inoshima, N., Wang, Y., and Bubeck Wardenburg, J. (2012). Genetic requirement for ADAM10 in severe Staphylococcus aureus skin infection. J. Invest. Dermatol. 132, 1513–1516.10.1038/jid.2011.462Search in Google Scholar PubMed PubMed Central

Ira, J. and Johnston, L.J. (2008). Sphingomyelinase generation of ceramide promotes clustering of nanoscale domains in supported bilayer membranes. Biochim. Biophys. Acta 1778, 185–197.10.1016/j.bbamem.2007.09.021Search in Google Scholar PubMed

Jones, I., He, X., Katouzian, F., Darroch, P.I., and Schuchman, E.H. (2008). Characterization of common SMPD1 mutations causing types A and B Niemann-Pick disease and generation of mutation-specific mouse models. Mol. Genet. Metab. 95, 152–162.10.1016/j.ymgme.2008.08.004Search in Google Scholar PubMed PubMed Central

Kitatani, K., Idkowiak-Baldys, J., and Hannun, Y.A. (2008). The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell. Signal. 20, 1010–1018.10.1016/j.cellsig.2007.12.006Search in Google Scholar PubMed PubMed Central

Kornhuber, J., Rhein, C., Muller, C.P., and Muhle, C. (2015). Secretory sphingomyelinase in health and disease. Biol. Chem. 396, 707–736.10.1515/hsz-2015-0109Search in Google Scholar PubMed

Kramer, M., Quickert, S., Sponholz, C., Menzel, U., Huse, K., Platzer, M., Bauer, M., and Claus, R.A. (2015). Alternative splicing of SMPD1 in human sepsis. PLoS One 10, e0124503.10.1371/journal.pone.0124503Search in Google Scholar PubMed PubMed Central

Li, C., Peng, H., Japtok, L., Seitz, A., Riehle, A., Wilker, B., Soddemann, M., Kleuser, B., Edwards, M., Lammas, D., et al. (2016). Inhibition of neutral sphingomyelinase protects mice against systemic tuberculosis. Front. Biosci. 8, 311–325.10.2741/e769Search in Google Scholar

Ma, J., Gulbins, E., Edwards, M.J., Caldwell, C.C., Fraunholz, M., and Becker, K.A. (2017). Staphylococcus aureus α-toxin induces inflammatory cytokines via lysosomal acid sphingomyelinase and ceramides. Cell. Physiol. Biochem. 43, 2170–2184.10.1159/000484296Search in Google Scholar PubMed

Malik, Z.A., Denning, G.M., and Kusner, D.J. (2000). Inhibition of Ca2+ signaling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. J. Exp. Med. 191, 287–302.10.1084/jem.191.2.287Search in Google Scholar PubMed PubMed Central

Malik, Z.A., Thompson, C.R., Hashimi, S., Porter, B., Iyer, S.S., and Kusner, D.J. (2003). Cutting edge: Mycobacterium tuberculosis blocks Ca2+ signaling and phagosome maturation in human macrophages via specific inhibition of sphingosine kinase. J. Immunol. 170, 2811–2815.10.4049/jimmunol.170.6.2811Search in Google Scholar PubMed

McCollister, B.D., Myers, J.T., Jones-Carson, J., Voelker, D.R., and Vazquez-Torres, A. (2007). Constitutive acid sphingomyelinase enhances early and late macrophage killing of Salmonella enterica serovar Typhimurium. Infect. Immun. 75, 5346–5352.10.1128/IAI.00689-07Search in Google Scholar PubMed PubMed Central

McLean, C.J., Marles-Wright, J., Custodio, R., Lowther, J., Kennedy, A.J., Pollock, J., Clarke, D.J., Brown, A.R., and Campopiano, D.J. (2017). Characterization of homologous sphingosine-1-phosphate lyase isoforms in the bacterial pathogen Burkholderia pseudomallei. J. Lipid Res. 58, 137–150.10.1194/jlr.M071258Search in Google Scholar PubMed PubMed Central

Montes, L.R., Goni, F.M., Johnston, N.C., Goldfine, H., and Alonso, A. (2004). Membrane fusion induced by the catalytic activity of a phospholipase C/sphingomyelinase from Listeria monocytogenes. Biochemistry 43, 3688–3695.10.1021/bi0352522Search in Google Scholar PubMed

Mueller, V., Ringemann, C., Honigmann, A., Schwarzmann, G., Medda, R., Leutenegger, M., Polyakova, S., Belov, V.N., Hell, S.W., and Eggeling, C. (2011). STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys. J. 101, 1651–1660.10.1016/j.bpj.2011.09.006Search in Google Scholar PubMed PubMed Central

Nahrlich, L., Mainz, J.G., Adams, C., Engel, C., Herrmann, G., Icheva, V., Lauer, J., Deppisch, C., Wirth, A., Unger, K., et al. (2013). Therapy of CF-patients with amitriptyline and placebo – a randomised, double-blind, placebo-controlled phase IIb multicenter, cohort-study. Cell. Physiol. Biochem. 31, 505–512.10.1159/000350071Search in Google Scholar PubMed

Nakatsuji, T., Tang, D.C., Zhang, L., Gallo, R.L., and Huang, C.M. (2011). Propionibacterium acnes CAMP factor and host acid sphingomyelinase contribute to bacterial virulence: potential targets for inflammatory acne treatment. PLoS One 6, e14797.10.1371/journal.pone.0014797Search in Google Scholar PubMed PubMed Central

Nilsson, A. and Duan, R.D. (1999). Alkaline sphingomyelinases and ceramidases of the gastrointestinal tract. Chem. Phys. Lipids 102, 97–105.10.1016/S0009-3084(99)00078-XSearch in Google Scholar

Oda, M., Hashimoto, M., Takahashi, M., Ohmae, Y., Seike, S., Kato, R., Fujita, A., Tsuge, H., Nagahama, M., Ochi, S., et al. (2012). Role of sphingomyelinase in infectious diseases caused by Bacillus cereus. PLoS One 7, e38054.10.1371/journal.pone.0038054Search in Google Scholar PubMed PubMed Central

Peng, H., Li, C., Kadow, S., Henry, B.D., Steinmann, J., Becker, K.A., Riehle, A., Beckmann, N., Wilker, B., Li, P.L., et al. (2015). Acid sphingomyelinase inhibition protects mice from lung edema and lethal Staphylococcus aureus sepsis. J. Mol. Med. 93, 675–689.10.1007/s00109-014-1246-ySearch in Google Scholar PubMed PubMed Central

Pfeiffer, A., Bottcher, A., Orso, E., Kapinsky, M., Nagy, P., Bodnar, A., Spreitzer, I., Liebisch, G., Drobnik, W., Gempel, K., et al. (2001). Lipopolysaccharide and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. Eur. J. Immunol. 31, 3153–3164.10.1002/1521-4141(200111)31:11<3153::AID-IMMU3153>3.0.CO;2-0Search in Google Scholar

Pier, G.B., Grout, M., Zaidi, T.S., Olsen, J.C., Johnson, L.G., Yankaskas, J.R., and Goldberg, J.B. (1996). Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science 271, 64–67.10.1126/science.271.5245.64Search in Google Scholar

Portnoy, D.A., Auerbuch, V., and Glomski, I.J. (2002). The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J. Cell. Biol. 158, 409–414.10.1083/jcb.200205009Search in Google Scholar

Reinehr, R., Becker, S., Braun, J., Eberle, A., Grether-Beck, S., and Haussinger, D. (2006). Endosomal acidification and activation of NADPH oxidase isoforms are upstream events in hyperosmolarity-induced hepatocyte apoptosis. J. Biol. Chem. 281, 23150–23166.10.1074/jbc.M601451200Search in Google Scholar

Rodrigues-Lima, F., Fensome, A.C., Josephs, M., Evans, J., Veldman, R.J., and Katan, M. (2000). Structural requirements for catalysis and membrane targeting of mammalian enzymes with neutral sphingomyelinase and lysophospholipid phospholipase C activities. Analysis by chemical modification and site-directed mutagenesis. J. Biol. Chem. 275, 28316–28325.10.1074/jbc.M003080200Search in Google Scholar

Rolando, M., Escoll, P., Nora, T., Botti, J., Boitez, V., Bedia, C., Daniels, C., Abraham, G., Stogios, P.J., Skarina, T., et al. (2016). Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy. Proc. Natl. Acad. Sci. USA 113, 1901–1906.10.1073/pnas.1522067113Search in Google Scholar

Santana, P., Pena, L.A., Haimovitz-Friedman, A., Martin, S., Green, D., McLoughlin, M., Cordon-Cardo, C., Schuchman, E.H., Fuks, Z., and Kolesnick, R. (1996). Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86, 189–199.10.1016/S0092-8674(00)80091-4Search in Google Scholar

Schissel, S.L., Schuchman, E.H., Williams, K.J., and Tabas, I. (1996). Zn2+-stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene. J. Biol. Chem. 271, 18431–18436.10.1074/jbc.271.31.18431Search in Google Scholar PubMed

Schoen, C., Blom, J., Claus, H., Schramm-Gluck, A., Brandt, P., Muller, T., Goesmann, A., Joseph, B., Konietzny, S., Kurzai, O., et al. (2008). Whole-genome comparison of disease and carriage strains provides insights into virulence evolution in Neisseria meningitidis. Proc. Natl. Acad. Sci. USA 105, 3473–3478.10.1073/pnas.0800151105Search in Google Scholar PubMed PubMed Central

Schramm, M., Herz, J., Haas, A., Kronke, M., and Utermohlen, O. (2008). Acid sphingomyelinase is required for efficient phago-lysosomal fusion. Cell. Microbiol. 10, 1839–1853.10.1111/j.1462-5822.2008.01169.xSearch in Google Scholar PubMed

Schutze, S., Potthoff, K., Machleidt, T., Berkovic, D., Wiegmann, K., and Kronke, M. (1992). TNF activates NF-κB by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71, 765–776.10.1016/0092-8674(92)90553-OSearch in Google Scholar

Scidmore, M.A., Fischer, E.R., and Hackstadt, T. (1996). Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J. Cell. Biol. 134, 363–374.10.1083/jcb.134.2.363Search in Google Scholar PubMed PubMed Central

Simonis, A., Hebling, S., Gulbins, E., Schneider-Schaulies, S., and Schubert-Unkmeir, A. (2014). Differential activation of acid sphingomyelinase and ceramide release determines invasiveness of Neisseria meningitidis into brain endothelial cells. PLoS Pathog. 10, e1004160.10.1371/journal.ppat.1004160Search in Google Scholar PubMed PubMed Central

Siskind, L.J. and Colombini, M. (2000). The lipids C2- and C16-ceramide form large stable channels. Implications for apoptosis. J. Biol. Chem. 275, 38640–38644.10.1074/jbc.C000587200Search in Google Scholar PubMed PubMed Central

Siskind, L.J., Kolesnick, R.N., and Colombini, M. (2002). Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J. Biol. Chem. 277, 26796–26803.10.1074/jbc.M200754200Search in Google Scholar PubMed PubMed Central

Siskind, L.J., Davoody, A., Lewin, N., Marshall, S., and Colombini, M. (2003). Enlargement and contracture of C2-ceramide channels. Biophys. J. 85, 1560–1575.10.1016/S0006-3495(03)74588-3Search in Google Scholar PubMed PubMed Central

Siskind, L.J., Kolesnick, R.N., and Colombini, M. (2006). Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations. Mitochondrion 6, 118–125.10.1016/j.mito.2006.03.002Search in Google Scholar PubMed PubMed Central

Smith, E.L. and Schuchman, E.H. (2008). The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases. FASEB J. 22, 3419–3431.10.1096/fj.08-108043Search in Google Scholar PubMed PubMed Central

Speer, A., Sun, J., Danilchanka, O., Meikle, V., Rowland, J.L., Walter, K., Buck, B.R., Pavlenok, M., Holscher, C., Ehrt, S., et al. (2015). Surface hydrolysis of sphingomyelin by the outer membrane protein Rv0888 supports replication of Mycobacterium tuberculosis in macrophages. Mol. Microbiol. 97, 881–897.10.1111/mmi.13073Search in Google Scholar PubMed PubMed Central

Teichgraber, V., Ulrich, M., Endlich, N., Riethmuller, J., Wilker, B., De Oliveira-Munding, C.C., van Heeckeren, A.M., Barr, M.L., von Kurthy, G., Schmid, K.W., et al. (2008). Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat. Med. 14, 382–391.10.1038/nm1748Search in Google Scholar PubMed

Thompson, C.R., Iyer, S.S., Melrose, N., VanOosten, R., Johnson, K., Pitson, S.M., Obeid, L.M., and Kusner, D.J. (2005). Sphingosine kinase 1 (SK1) is recruited to nascent phagosomes in human macrophages: inhibition of SK1 translocation by Mycobacterium tuberculosis. J. Immunol. 174, 3551–3561.10.4049/jimmunol.174.6.3551Search in Google Scholar PubMed

Utermohlen, O., Karow, U., Lohler, J., and Kronke, M. (2003). Severe impairment in early host defense against Listeria monocytogenes in mice deficient in acid sphingomyelinase. J. Immunol. 170, 2621–2628.10.4049/jimmunol.170.5.2621Search in Google Scholar PubMed

van Ooij, C., Kalman, L., van, I., Nishijima, M., Hanada, K., Mostov, K., and Engel, J.N. (2000). Host cell-derived sphingolipids are required for the intracellular growth of Chlamydia trachomatis. Cell. Microbiol. 2, 627–637.10.1046/j.1462-5822.2000.00077.xSearch in Google Scholar PubMed

Vazquez, C.L., Rodgers, A., Herbst, S., Coade, S., Gronow, A., Guzman, C.A., Wilson, M.S., Kanzaki, M., Nykjaer, A., and Gutierrez, M.G. (2016). The proneurotrophin receptor sortilin is required for Mycobacterium tuberculosis control by macrophages. Sci. Rep. 6, 29332.10.1038/srep29332Search in Google Scholar PubMed PubMed Central

Walburger, A., Koul, A., Ferrari, G., Nguyen, L., Prescianotto-Baschong, C., Huygen, K., Klebl, B., Thompson, C., Bacher, G., and Pieters, J. (2004). Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304, 1800–1804.10.1126/science.1099384Search in Google Scholar PubMed

Wilke, G.A. and Bubeck Wardenburg, J. (2010). Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus α-hemolysin-mediated cellular injury. Proc. Natl. Acad. Sci. USA 107, 13473–13478.10.1073/pnas.1001815107Search in Google Scholar PubMed PubMed Central

Yamaji, T. and Hanada, K. (2015). Sphingolipid metabolism and interorganellar transport: localization of sphingolipid enzymes and lipid transfer proteins. Traffic 16, 101–122.10.1111/tra.12239Search in Google Scholar PubMed

Yazdankhah, S.P. and Caugant, D.A. (2004). Neisseria meningitidis: an overview of the carriage state. J. Med. Microbiol. 53, 821–832.10.1099/jmm.0.45529-0Search in Google Scholar PubMed

Yazdankhah, S.P., Kriz, P., Tzanakaki, G., Kremastinou, J., Kalmusova, J., Musilek, M., Alvestad, T., Jolley, K.A., Wilson, D.J., McCarthy, N.D., et al. (2004). Distribution of serogroups and genotypes among disease-associated and carried isolates of Neisseria meningitidis from the Czech Republic, Greece, and Norway. J. Clin. Microbiol. 42, 5146–5153.10.1128/JCM.42.11.5146-5153.2004Search in Google Scholar PubMed PubMed Central

Young, K.W. and Nahorski, S.R. (2002). Sphingosine 1-phosphate: a Ca2+ release mediator in the balance. Cell Calcium 32, 335–341.10.1016/S0143416002001835Search in Google Scholar PubMed

Yu, H., Zeidan, Y.H., Wu, B.X., Jenkins, R.W., Flotte, T.R., Hannun, Y.A., and Virella-Lowell, I. (2009). Defective acid sphingomyelinase pathway with Pseudomonas aeruginosa infection in cystic fibrosis. Am. J. Respir. Cell Mol. Biol. 41, 367–375.10.1165/rcmb.2008-0295OCSearch in Google Scholar PubMed PubMed Central

Zeidan, Y.H. and Hannun, Y.A. (2007). Activation of acid sphingomyelinase by protein kinase Cδ-mediated phosphorylation. J. Biol. Chem. 282, 11549–11561.10.1074/jbc.M609424200Search in Google Scholar PubMed

Zeidan, Y.H., Wu, B.X., Jenkins, R.W., Obeid, L.M., and Hannun, Y.A. (2008). A novel role for protein kinase Cδ-mediated phosphorylation of acid sphingomyelinase in UV light-induced mitochondrial injury. FASEB J. 22, 183–193.10.1096/fj.07-8967comSearch in Google Scholar PubMed

Zhang, C. and Li, P.L. (2010). Membrane raft redox signalosomes in endothelial cells. Free Radic. Res. 44, 831–842.10.3109/10715762.2010.485994Search in Google Scholar PubMed PubMed Central

Zhang, Y., Li, X., Carpinteiro, A., and Gulbins, E. (2008). Acid sphingomyelinase amplifies redox signaling in Pseudomonas aeruginosa-induced macrophage apoptosis. J. Immunol. 181, 4247–4254.10.4049/jimmunol.181.6.4247Search in Google Scholar PubMed

Zhang, Y., Li, X., Grassme, H., Doring, G., and Gulbins, E. (2010). Alterations in ceramide concentration and pH determine the release of reactive oxygen species by Cftr-deficient macrophages on infection. J. Immunol. 184, 5104–5111.10.4049/jimmunol.0902851Search in Google Scholar PubMed

Received: 2018-03-26
Accepted: 2018-06-14
Published Online: 2018-07-20
Published in Print: 2018-09-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2018-0200/pdf
Scroll to top button