Startseite Lebenswissenschaften Neuronal RNP granules: from physiological to pathological assemblies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Neuronal RNP granules: from physiological to pathological assemblies

  • Fabienne De Graeve

    Fabienne De Graeve received her PhD in Molecular and Cell Biology in 1999 from the University of Strasbourg, France. She then worked as a postdoctoral researcher in Francesco Ramirez’ group at the Mount Sinai School of Medicine, New-York, USA and in Bernard Dastugue’s group at the University of Clermont Auvergne, France. Since 2004, she is Assistant Professor at the University of Nice Sophia Antipolis, part of University Côte d’Azur, France and joined Florence Besse’s group in 2012 at the Institute of Biology Valrose (iBV), Nice, France.

    und Florence Besse

    Florence Besse received her PhD in Cell and Developmental Biology in 2002 from the University Paris 7, France. She then joined Anne Ephrussi’s group at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany as a postdoctoral researcher, then as a staff scientist. In 2009, she launched her group at the Institute of Biology Valrose (iBV), Nice, France. Her laboratory studies the mechanisms of mRNA transport and translation in neurons.

    ORCID logo EMAIL logo
Veröffentlicht/Copyright: 11. April 2018

Abstract

Neuronal cells rely on macro- and micro-cellular compartmentalization to rapidly process information, and respond locally to external stimuli. Such a cellular organization is achieved via the assembly of neuronal ribonucleoprotein (RNP) granules, dynamic membrane-less organelles enriched in RNAs and associated regulatory proteins. In this review, we discuss how these high-order structures transport mRNAs to dendrites and axons, and how they contribute to the spatio-temporal regulation of localized mRNA translation. We also highlight how recent biophysical studies have shed light on the mechanisms underlying neuronal RNP granule dynamic assembly, remodeling and maturation, in both physiological and pathological contexts.

About the authors

Fabienne De Graeve

Fabienne De Graeve received her PhD in Molecular and Cell Biology in 1999 from the University of Strasbourg, France. She then worked as a postdoctoral researcher in Francesco Ramirez’ group at the Mount Sinai School of Medicine, New-York, USA and in Bernard Dastugue’s group at the University of Clermont Auvergne, France. Since 2004, she is Assistant Professor at the University of Nice Sophia Antipolis, part of University Côte d’Azur, France and joined Florence Besse’s group in 2012 at the Institute of Biology Valrose (iBV), Nice, France.

Florence Besse

Florence Besse received her PhD in Cell and Developmental Biology in 2002 from the University Paris 7, France. She then joined Anne Ephrussi’s group at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany as a postdoctoral researcher, then as a staff scientist. In 2009, she launched her group at the Institute of Biology Valrose (iBV), Nice, France. Her laboratory studies the mechanisms of mRNA transport and translation in neurons.

Acknowledgments

We apologize to those whose work could not be cited owing to space constraints. We thank Arnaud Hübstenberger and Caroline Medioni for critical reading of the manuscript. Work in F.B.’s group is supported by the ANR (through the RNAGRIMP research grant and the ‘Investments for the Future’ LABEX SIGNALIFE program # ANR-11-LABX-0028-01), the Cancéropôle PACA (Emergence grant) and the JPND program (through the FlySMALS grant).

References

Alami, N.H., Smith, R.B., Carrasco, M.A., Williams, L.A., Winborn, C.S., Han, S.S.W., Kiskinis, E., Winborn, B., Freibaum, B.D., Kanagaraj, A., et al. (2014). Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81, 536–543.10.1016/j.neuron.2013.12.018Suche in Google Scholar PubMed PubMed Central

Alberti, S. (2017). Phase separation in biology. Curr. Biol. 27, R1097–R1102.10.1016/j.cub.2017.08.069Suche in Google Scholar PubMed

Baez, M.V., Luchelli, L., Maschi, D., Habif, M., Pascual, M., Thomas, M.G., and Boccaccio, G.L. (2011). Smaug1 mRNA-silencing foci respond to NMDA and modulate synapse formation. J. Cell Biol. 195, 1141–1157.10.1083/jcb.201108159Suche in Google Scholar PubMed PubMed Central

Balasanyan, V. and Arnold, D.B. (2014). Actin and myosin-dependent localization of mRNA to dendrites. PLoS One 9, e92349.10.1371/journal.pone.0092349Suche in Google Scholar PubMed PubMed Central

Banani, S.F., Lee, H.O., Hyman, A.A., and Rosen, M.K. (2017). Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298.10.1038/nrm.2017.7Suche in Google Scholar PubMed PubMed Central

Batish, M., van den Bogaard, P., Kramer, F.R., and Tyagi, S. (2012). Neuronal mRNAs travel singly into dendrites. Proc. Natl. Acad. Sci. USA 109, 4645–4650.10.1073/pnas.1111226109Suche in Google Scholar PubMed PubMed Central

Berger, S.M., Fernandez-Lamo, I., Schonig, K., Fernandez Moya, S.M., Ehses, J., Schieweck, R., Clementi, S., Enkel, T., Grothe, S., von Bohlen Und Halbach, O., et al. (2017). Forebrain-specific, conditional silencing of Staufen2 alters synaptic plasticity, learning, and memory in rats. Genome Biol. 18, 222.10.1186/s13059-017-1350-8Suche in Google Scholar PubMed PubMed Central

Besse, F. and Ephrussi, A. (2008). Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat. Rev. Mol. Cell Biol. 9, 971–980.10.1038/nrm2548Suche in Google Scholar PubMed

Bianco, A., Dienstbier, M., Salter, H.K., Gatto, G., and Bullock, S.L. (2010). Bicaudal-D regulates fragile X mental retardation protein levels, motility, and function during neuronal morphogenesis. Curr. Biol. 20, 1487–1492.10.1016/j.cub.2010.07.016Suche in Google Scholar PubMed PubMed Central

Bowden, H.A. and Dormann, D. (2016). Altered mRNP granule dynamics in FTLD pathogenesis. J. Neurochem. 138(Suppl. 1), 112–133.10.1111/jnc.13601Suche in Google Scholar PubMed

Buxbaum, A.R., Wu, B., and Singer, R.H. (2014). Single β-actin mRNA detection in neurons reveals a mechanism for regulating its translatability. Science 343, 419–422.10.1126/science.1242939Suche in Google Scholar

Cajigas, I.J., Tushev, G., Will, T.J., tom Dieck, S., Fuerst, N., and Schuman, E.M. (2012). The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74, 453–466.10.1016/j.neuron.2012.02.036Suche in Google Scholar

Calliari, A., Farias, J., Puppo, A., Canclini, L., Mercer, J.A., Munroe, D., Sotelo, J.R., and Sotelo-Silveira, J.R. (2014). Myosin Va associates with mRNA in ribonucleoprotein particles present in myelinated peripheral axons and in the central nervous system. Dev. Neurobiol. 74, 382–396.10.1002/dneu.22155Suche in Google Scholar

Campbell, D.S. and Holt, C.E. (2001). Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013–1026.10.1016/S0896-6273(01)00551-7Suche in Google Scholar

Chae, Y.S., Lee, S.H., Cheang, Y.H., Lee, N., Rim, Y.S., Jang, D.J., and Kaang, B.K. (2010). Neuronal RNA granule contains ApCPEB1, a novel cytoplasmic polyadenylation element binding protein, in Aplysia sensory neuron. Exp. Mol. Med. 42, 30–37.10.3858/emm.2010.42.1.003Suche in Google Scholar PubMed PubMed Central

Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S., and Zhuang, X. (2015). RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090.10.1126/science.aaa6090Suche in Google Scholar

Christie, S.B., Akins, M.R., Schwob, J.E., and Fallon, J.R. (2009). The FXG: a presynaptic fragile X granule expressed in a subset of developing brain circuits. J. Neurosci. 29, 1514–1524.10.1523/JNEUROSCI.3937-08.2009Suche in Google Scholar PubMed PubMed Central

Comery, T.A., Harris, J.B., Willems, P.J., Oostra, B.A., Irwin, S.A., Weiler, I.J., and Greenough, W.T. (1997). Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc. Natl. Acad. Sci. USA 94, 5401–5404.10.1073/pnas.94.10.5401Suche in Google Scholar PubMed PubMed Central

Cougot, N., Bhattacharyya, S.N., Tapia-Arancibia, L., Bordonne, R., Filipowicz, W., Bertrand, E., and Rage, F. (2008). Dendrites of mammalian neurons contain specialized P-body-like structures that respond to neuronal activation. J. Neurosci. 28, 13793–13804.10.1523/JNEUROSCI.4155-08.2008Suche in Google Scholar PubMed PubMed Central

Courchaine, E.M., Lu, A., and Neugebauer, K.M. (2016). Droplet organelles? EMBO J. 35, 1603–1612.10.15252/embj.201593517Suche in Google Scholar PubMed PubMed Central

Davidovic, L., Jaglin, X.H., Lepagnol-Bestel, A.M., Tremblay, S., Simonneau, M., Bardoni, B., and Khandjian, E.W. (2007). The fragile X mental retardation protein is a molecular adaptor between the neurospecific KIF3C kinesin and dendritic RNA granules. Hum. Mol. Genet. 16, 3047–3058.10.1093/hmg/ddm263Suche in Google Scholar PubMed

Dictenberg, J.B., Swanger, S.A., Antar, L.N., Singer, R.H., and Bassell, G.J. (2008). A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome. Dev. Cell. 14, 926–939.10.1016/j.devcel.2008.04.003Suche in Google Scholar PubMed PubMed Central

Donlin-Asp, P.G., Bassell, G.J., and Rossoll, W. (2016). A role for the survival of motor neuron protein in mRNP assembly and transport. Curr. Opin. Neurobiol. 39, 53–61.10.1016/j.conb.2016.04.004Suche in Google Scholar PubMed

Donlin-Asp, P.G., Fallini, C., Campos, J., Chou, C.C., Merritt, M.E., Phan, H.C., Bassell, G.J., and Rossoll, W. (2017a). The survival of motor neuron protein acts as a molecular chaperone for mRNP assembly. Cell Rep. 18, 1660–1673.10.1016/j.celrep.2017.01.059Suche in Google Scholar PubMed PubMed Central

Donlin-Asp, P.G., Rossoll, W., and Bassell, G.J. (2017b). Spatially and temporally regulating translation via mRNA-binding proteins in cellular and neuronal function. FEBS Lett. 591, 1508–1525.10.1002/1873-3468.12621Suche in Google Scholar PubMed

Doyle, M. and Kiebler, M.A. (2011). Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J. 30, 3540–3552.10.1038/emboj.2011.278Suche in Google Scholar PubMed PubMed Central

Dynes, J.L. and Steward, O. (2012). Arc mRNA docks precisely at the base of individual dendritic spines indicating the existence of a specialized microdomain for synapse-specific mRNA translation. J. Comp. Neurol. 520, 3105–3119.10.1002/cne.23073Suche in Google Scholar PubMed PubMed Central

El Fatimy, R., Davidovic, L., Tremblay, S., Jaglin, X., Dury, A., Robert, C., De Koninck, P., and Khandjian, E.W. (2016). Tracking the fragile X mental retardation protein in a highly ordered neuronal RiboNucleoParticles population: a link between stalled polyribosomes and RNA granules. PLoS Genet. 12, e1006192.10.1371/journal.pgen.1006192Suche in Google Scholar PubMed PubMed Central

Elvira, G., Wasiak, S., Blandford, V., Tong, X.K., Serrano, A., Fan, X., del Rayo Sanchez-Carbente, M., Servant, F., Bell, A.W., Boismenu, D., et al. (2006). Characterization of an RNA granule from developing brain. Mol. Cell Proteomics 5, 635–651.10.1074/mcp.M500255-MCP200Suche in Google Scholar PubMed

Fallini, C., Donlin-Asp, P.G., Rouanet, J.P., Bassell, G.J., and Rossoll, W. (2016). Deficiency of the survival of motor neuron protein impairs mRNA localization and local translation in the growth cone of motor neurons. J. Neurosci. 36, 3811–3820.10.1523/JNEUROSCI.2396-15.2016Suche in Google Scholar PubMed PubMed Central

Fay, M.M., Anderson, P.J., and Ivanov, P. (2017). ALS/FTD-associated C9ORF72 repeat RNA promotes phase transitions in vitro and in cells. Cell Rep. 21, 3573–3584.10.1016/j.celrep.2017.11.093Suche in Google Scholar PubMed PubMed Central

Fernandez-Moya, S.M., Bauer, K.E., and Kiebler, M.A. (2014). Meet the players: local translation at the synapse. Front Mol. Neurosci. 7, 84.10.3389/fnmol.2014.00084Suche in Google Scholar PubMed PubMed Central

Fritzsche, R., Karra, D., Bennett, K.L., Ang, F.Y., Heraud-Farlow, J.E., Tolino, M., Doyle, M., Bauer, K.E., Thomas, S., Planyavsky, M., et al. (2013). Interactome of two diverse RNA granules links mRNA localization to translational repression in neurons. Cell Rep. 5, 1749–1762.10.1016/j.celrep.2013.11.023Suche in Google Scholar PubMed

Gama-Carvalho, M., Garcia-Vaquero, M.L., Pinto, F.R., Besse, F., Weis, J., Voigt, A., Schulz, J.B., and De Las Rivas, J. (2017). Linking amyotrophic lateral sclerosis and spinal muscular atrophy through RNA-transcriptome homeostasis: a genomics perspective. J. Neurochem. 141, 12–30.10.1111/jnc.13945Suche in Google Scholar PubMed

Gopal, P.P., Nirschl, J.J., Klinman, E., and Holzbaur, E.L. (2017). Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons. Proc. Natl. Acad. Sci. USA 114, E2466–E2475.10.1073/pnas.1614462114Suche in Google Scholar PubMed PubMed Central

Graber, T.E., Hebert-Seropian, S., Khoutorsky, A., David, A., Yewdell, J.W., Lacaille, J.C., and Sossin, W.S. (2013). Reactivation of stalled polyribosomes in synaptic plasticity. Proc. Natl. Acad. Sci. USA 110, 16205–16210.10.1073/pnas.1307747110Suche in Google Scholar PubMed PubMed Central

Gumy, L.F., Yeo, G.S., Tung, Y.C., Zivraj, K.H., Willis, D., Coppola, G., Lam, B.Y., Twiss, J.L., Holt, C.E., and Fawcett, J.W. (2011). Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. RNA 17, 85–98.10.1261/rna.2386111Suche in Google Scholar PubMed PubMed Central

Han, T.W., Kato, M., Xie, S., Wu, L.C., Mirzaei, H., Pei, J., Chen, M., Xie, Y., Allen, J., Xiao, G., et al. (2012). Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149, 768–779.10.1016/j.cell.2012.04.016Suche in Google Scholar PubMed

Harrison, A.F. and Shorter, J. (2017). RNA-binding proteins with prion-like domains in health and disease. Biochem. J. 474, 1417–1438.10.1042/BCJ20160499Suche in Google Scholar PubMed PubMed Central

Heraud-Farlow, J.E., Sharangdhar, T., Li, X., Pfeifer, P., Tauber, S., Orozco, D., Hormann, A., Thomas, S., Bakosova, A., Farlow, A.R., et al. (2013). Staufen2 regulates neuronal target RNAs. Cell Rep. 5, 1511–1518.10.1016/j.celrep.2013.11.039Suche in Google Scholar PubMed

Holt, C.E. and Schuman, E.M. (2013). The central dogma decentralized: new perspectives on RNA function and local translation in neurons. Neuron 80, 648–657.10.1016/j.neuron.2013.10.036Suche in Google Scholar PubMed PubMed Central

Huang, Y.S., Carson, J.H., Barbarese, E., and Richter, J. D. (2003). Facilitation of dendritic mRNA transport by CPEB. Genes Dev. 17, 638–653.10.1101/gad.1053003Suche in Google Scholar PubMed PubMed Central

Huttelmaier, S., Zenklusen, D., Lederer, M., Dictenberg, J., Lorenz, M., Meng, X., Bassell, G.J., Condeelis, J., and Singer, R.H. (2005). Spatial regulation of β-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438, 512–515.10.1038/nature04115Suche in Google Scholar PubMed

Ifrim, M.F., Williams, K.R., and Bassell, G.J. (2015). Single-molecule imaging of PSD-95 mRNA translation in dendrites and its dysregulation in a mouse model of fragile X syndrome. J. Neurosci. 35, 7116–7130.10.1523/JNEUROSCI.2802-14.2015Suche in Google Scholar PubMed PubMed Central

Jain, A. and Vale, R.D. (2017). RNA phase transitions in repeat expansion disorders. Nature 546, 243–247.10.1038/nature22386Suche in Google Scholar PubMed PubMed Central

Jeong, J.H., Nam, Y.J., Kim, S.Y., Kim, E.G., Jeong, J., and Kim, H.K. (2007). The transport of Staufen2-containing ribonucleoprotein complexes involves kinesin motor protein and is modulated by mitogen-activated protein kinase pathway. J. Neurochem. 102, 2073–2084.10.1111/j.1471-4159.2007.04697.xSuche in Google Scholar PubMed

Kanai, Y., Dohmae, N., and Hirokawa, N. (2004). Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43, 513–525.10.1016/j.neuron.2004.07.022Suche in Google Scholar PubMed

Khayachi, A., Gwizdek, C., Poupon, G., Alcor, D., Chafai, M., Casse, F., Maurin, T., Prieto, M., Folci, A., De Graeve, F., et al. (2018). Sumoylation regulates FMRP-mediated dendritic spine elimination and maturation. Nat. Commun. 9, 757.10.1038/s41467-018-03222-ySuche in Google Scholar PubMed PubMed Central

Kiebler, M.A. and Bassell, G.J. (2006). Neuronal RNA granules: movers and makers. Neuron 51, 685–690.10.1016/j.neuron.2006.08.021Suche in Google Scholar PubMed

Kim, S. and Martin, K.C. (2015). Neuron-wide RNA transport combines with netrin-mediated local translation to spatially regulate the synaptic proteome. eLife 4.10.7554/eLife.04158.021Suche in Google Scholar

Kim, H.J., Kim, N.C., Wang, Y.D., Scarborough, E.A., Moore, J., Diaz, Z., MacLea, K.S., Freibaum, B., Li, S., Molliex, A., et al. (2013). Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467–473.10.1038/nature11922Suche in Google Scholar PubMed PubMed Central

Klann, E. and Dever, T.E. (2004). Biochemical mechanisms for translational regulation in synaptic plasticity. Nat. Rev. Neurosci. 5, 931–942.10.1038/nrn1557Suche in Google Scholar

Knowles, R.B., Sabry, J.H., Martone, M.E., Deerinck, T.J., Ellisman, M.H., Bassell, G.J., and Kosik, K.S. (1996). Translocation of RNA granules in living neurons. J. Neurosci. 16, 7812–7820.10.1523/JNEUROSCI.16-24-07812.1996Suche in Google Scholar

Kohrmann, M., Luo, M., Kaether, C., DesGroseillers, L., Dotti, C.G., and Kiebler, M.A. (1999). Microtubule-dependent recruitment of Staufen-green fluorescent protein into large RNA-containing granules and subsequent dendritic transport in living hippocampal neurons. Mol. Biol. Cell 10, 2945–2953.10.1091/mbc.10.9.2945Suche in Google Scholar

Krichevsky, A.M. and Kosik, K.S. (2001). Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation. Neuron 32, 683–696.10.1016/S0896-6273(01)00508-6Suche in Google Scholar

Kruttner, S., Stepien, B., Noordermeer, J.N., Mommaas, M.A., Mechtler, K., Dickson, B.J., and Keleman, K. (2012). Drosophila CPEB Orb2A mediates memory independent of Its RNA-binding domain. Neuron 76, 383–395.10.1016/j.neuron.2012.08.028Suche in Google Scholar PubMed PubMed Central

Lee, K.H., Zhang, P., Kim, H.J., Mitrea, D.M., Sarkar, M., Freibaum, B.D., Cika, J., Coughlin, M., Messing, J., Molliex, A., et al. (2016). C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 167, 774–788.e717.10.1016/j.cell.2016.10.002Suche in Google Scholar PubMed PubMed Central

Lepelletier, L., Langlois, S.D., Kent, C.B., Welshhans, K., Morin, S., Bassell, G.J., Yam, P.T., and Charron, F. (2017). Sonic hedgehog guides axons via zipcode binding protein 1-mediated local translation. J. Neurosci. 37, 1685–1695.10.1523/JNEUROSCI.3016-16.2016Suche in Google Scholar PubMed PubMed Central

Leung, K.M., van Horck, F.P., Lin, A.C., Allison, R., Standart, N., and Holt, C.E. (2006). Asymmetrical β-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nat. Neurosci. 9, 1247–1256.10.1038/nn1775Suche in Google Scholar PubMed PubMed Central

Li, P., Banjade, S., Cheng, H.C., Kim, S., Chen, B., Guo, L., Llaguno, M., Hollingsworth, J.V., King, D.S., Banani, S.F., et al. (2012). Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340.10.1038/nature10879Suche in Google Scholar PubMed PubMed Central

Li, D.K., Tisdale, S., Lotti, F., and Pellizzoni, L. (2014). SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease. Semin. Cell Dev. Biol. 32, 22–29.10.1016/j.semcdb.2014.04.026Suche in Google Scholar PubMed PubMed Central

Lin, Y., Protter, D.S., Rosen, M.K., and Parker, R. (2015). Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219.10.1016/j.molcel.2015.08.018Suche in Google Scholar PubMed PubMed Central

Ling, S.C., Polymenidou, M., and Cleveland, D.W. (2013). Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438.10.1016/j.neuron.2013.07.033Suche in Google Scholar PubMed PubMed Central

Lionnet, T., Czaplinski, K., Darzacq, X., Shav-Tal, Y., Wells, A.L., Chao, J.A., Park, H.Y., de Turris, V., Lopez-Jones, M., and Singer, R.H. (2011). A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat. Methods 8, 165–170.10.1038/nmeth.1551Suche in Google Scholar PubMed PubMed Central

Majumdar, A., Cesario, W.C., White-Grindley, E., Jiang, H., Ren, F., Khan, M.R., Li, L., Choi, E.M., Kannan, K., Guo, F., et al. (2012). Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory. Cell 148, 515–529.10.1016/j.cell.2012.01.004Suche in Google Scholar PubMed

Malinovska, L., Kroschwald, S., and Alberti, S. (2013). Protein disorder, prion propensities, and self-organizing macromolecular collectives. Biochim. Biophys. Acta 1834, 918–931.10.1016/j.bbapap.2013.01.003Suche in Google Scholar PubMed

Mallardo, M., Deitinghoff, A., Muller, J., Goetze, B., Macchi, P., Peters, C., and Kiebler, M.A. (2003). Isolation and characterization of Staufen-containing ribonucleoprotein particles from rat brain. Proc. Natl. Acad. Sci. USA 100, 2100–2105.10.1073/pnas.0334355100Suche in Google Scholar PubMed PubMed Central

Maurin, T., Zongaro, S., and Bardoni, B. (2014). Fragile X syndrome: from molecular pathology to therapy. Neurosci. Biobehav. Rev. 46, 242–255.10.1016/j.neubiorev.2014.01.006Suche in Google Scholar PubMed

Mazroui, R., Huot, M.E., Tremblay, S., Filion, C., Labelle, Y., and Khandjian, E.W. (2002). Trapping of messenger RNA by fragile X mental retardation protein into cytoplasmic granules induces translation repression. Hum. Mol. Genet. 11, 3007–3017.10.1093/hmg/11.24.3007Suche in Google Scholar PubMed

Medioni, C. and Besse, F. (2018). The secret life of RNA: lessons from emerging methodologies. Methods Mol. Biol. 1649, 1–28.10.1007/978-1-4939-7213-5_1Suche in Google Scholar PubMed

Medioni, C., Ramialison, M., Ephrussi, A., and Besse, F. (2014). Imp promotes axonal remodeling by regulating profilin mRNA during brain development. Curr. Biol. 24, 793–800.10.1016/j.cub.2014.02.038Suche in Google Scholar PubMed

Mikl, M., Vendra, G., and Kiebler, M.A. (2011). Independent localization of MAP2, CaMKIIα and β-actin RNAs in low copy numbers. EMBO Rep. 12, 1077–1084.10.1038/embor.2011.149Suche in Google Scholar PubMed PubMed Central

Mitsumori, K., Takei, Y., and Hirokawa, N. (2017). Components of RNA granules affect their localization and dynamics in neuronal dendrites. Mol. Biol. Cell 28, 1412–1417.10.1091/mbc.e16-07-0497Suche in Google Scholar PubMed PubMed Central

Molliex, A., Temirov, J., Lee, J., Coughlin, M., Kanagaraj, A.P., Kim, H.J., Mittag, T., and Taylor, J.P. (2015). Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133.10.1016/j.cell.2015.09.015Suche in Google Scholar PubMed PubMed Central

Monahan, Z., Ryan, V.H., Janke, A.M., Burke, K.A., Rhoads, S.N., Zerze, G.H., O’Meally, R., Dignon, G.L., Conicella, A.E., Zheng, W., et al. (2017). Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J. 36, 2951–2967.10.15252/embj.201696394Suche in Google Scholar PubMed PubMed Central

Muddashetty, R.S., Nalavadi, V.C., Gross, C., Yao, X., Xing, L., Laur, O., Warren, S.T., and Bassell, G.J. (2011). Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling. Mol. Cell 42, 673–688.10.1016/j.molcel.2011.05.006Suche in Google Scholar PubMed PubMed Central

Murakami, T., Qamar, S., Lin, J.Q., Schierle, G.S., Rees, E., Miyashita, A., Costa, A.R., Dodd, R.B., Chan, F.T., Michel, C.H., et al. (2015). ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 88, 678–690.10.1016/j.neuron.2015.10.030Suche in Google Scholar PubMed PubMed Central

Na, Y., Park, S., Lee, C., Kim, D.K., Park, J.M., Sockanathan, S., Huganir, R.L., and Worley, P.F. (2016). Real-time imaging reveals properties of glutamate-induced Arc/Arg 3.1 translation in neuronal dendrites. Neuron 91, 561–573.10.1016/j.neuron.2016.06.017Suche in Google Scholar PubMed PubMed Central

Nakayama, K., Ohashi, R., Shinoda, Y., Yamazaki, M., Abe, M., Fujikawa, A., Shigenobu, S., Futatsugi, A., Noda, M., Mikoshiba, K., et al. (2017). RNG105/caprin1, an RNA granule protein for dendritic mRNA localization, is essential for long-term memory formation. eLife 6.10.7554/eLife.29677.029Suche in Google Scholar

Nalavadi, V.C., Griffin, L.E., Picard-Fraser, P., Swanson, A.M., Takumi, T., and Bassell, G.J. (2012). Regulation of zipcode binding protein 1 transport dynamics in axons by myosin Va. J. Neurosci. 32, 15133–15141.10.1523/JNEUROSCI.2006-12.2012Suche in Google Scholar PubMed PubMed Central

Narayanan, U., Nalavadi, V., Nakamoto, M., Pallas, D.C., Ceman, S., Bassell, G.J., and Warren, S.T. (2007). FMRP phosphorylation reveals an immediate-early signaling pathway triggered by group I mGluR and mediated by PP2A. J. Neurosci. 27, 14349–14357.10.1523/JNEUROSCI.2969-07.2007Suche in Google Scholar PubMed PubMed Central

Nott, T.J., Petsalaki, E., Farber, P., Jervis, D., Fussner, E., Plochowietz, A., Craggs, T.D., Bazett-Jones, D.P., Pawson, T., Forman-Kay, J.D., et al. (2015). Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947.10.1016/j.molcel.2015.01.013Suche in Google Scholar PubMed PubMed Central

Park, H.Y., Lim, H., Yoon, Y.J., Follenzi, A., Nwokafor, C., Lopez-Jones, M., Meng, X., and Singer, R.H. (2014). Visualization of dynamics of single endogenous mRNA labeled in live mouse. Science 343, 422–424.10.1126/science.1239200Suche in Google Scholar PubMed PubMed Central

Patel, A., Lee, H.O., Jawerth, L., Maharana, S., Jahnel, M., Hein, M.Y., Stoynov, S., Mahamid, J., Saha, S., Franzmann, T.M., et al. (2015). A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077.10.1016/j.cell.2015.07.047Suche in Google Scholar PubMed

Patel, A., Malinovska, L., Saha, S., Wang, J., Alberti, S., Krishnan, Y., and Hyman, A.A. (2017). ATP as a biological hydrotrope. Science 356, 753–756.10.1126/science.aaf6846Suche in Google Scholar PubMed

Pimentel, J. and Boccaccio, G.L. (2014). Translation and silencing in RNA granules: a tale of sand grains. Front Mol. Neurosci. 7, 68.10.3389/fnmol.2014.00068Suche in Google Scholar PubMed PubMed Central

Ramaswami, M., Taylor, J.P., and Parker, R. (2013). Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154, 727–736.10.1016/j.cell.2013.07.038Suche in Google Scholar PubMed PubMed Central

Rook, M.S., Lu, M., and Kosik, K.S. (2000). CaMKIIα 3′ untranslated region-directed mRNA translocation in living neurons: visualization by GFP linkage. J. Neurosci. 20, 6385–6393.10.1523/JNEUROSCI.20-17-06385.2000Suche in Google Scholar

Rossoll, W., Jablonka, S., Andreassi, C., Kroning, A.K., Karle, K., Monani, U.R., and Sendtner, M. (2003). Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J. Cell Biol. 163, 801–812.10.1083/jcb.200304128Suche in Google Scholar PubMed PubMed Central

Sasaki, Y., Welshhans, K., Wen, Z., Yao, J., Xu, M., Goshima, Y., Zheng, J.Q., and Bassell, G.J. (2010). Phosphorylation of zipcode binding protein 1 is required for brain-derived neurotrophic factor signaling of local β-actin synthesis and growth cone turning. J. Neurosci. 30, 9349–9358.10.1523/JNEUROSCI.0499-10.2010Suche in Google Scholar PubMed PubMed Central

Shigeoka, T., Jung, H., Jung, J., Turner-Bridger, B., Ohk, J., Lin, J.Q., Amieux, P.S., and Holt, C.E. (2016). Dynamic axonal translation in developing and mature visual circuits. Cell 166, 181–192.10.1016/j.cell.2016.05.029Suche in Google Scholar PubMed PubMed Central

Shin, Y., Berry, J., Pannucci, N., Haataja, M.P., Toettcher, J.E., and Brangwynne, C.P. (2017). Spatiotemporal control of intracellular phase transitions using light-activated optodroplets. Cell 168, 159–171.e114.10.1016/j.cell.2016.11.054Suche in Google Scholar PubMed PubMed Central

Shukla, S. and Parker, R. (2016). Hypo- and hyper-assembly diseases of RNA-protein complexes. Trends Mol. Med. 22, 615–628.10.1016/j.molmed.2016.05.005Suche in Google Scholar PubMed PubMed Central

Si, K., Choi, Y.B., White-Grindley, E., Majumdar, A., and Kandel, E.R. (2010). Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 140, 421–435.10.1016/j.cell.2010.01.008Suche in Google Scholar PubMed

Spillane, M., Ketschek, A., Donnelly, C.J., Pacheco, A., Twiss, J.L., and Gallo, G. (2012). Nerve growth factor-induced formation of axonal filopodia and collateral branches involves the intra-axonal synthesis of regulators of the actin-nucleating Arp2/3 complex. J. Neurosci. 32, 17671–17689.10.1523/JNEUROSCI.1079-12.2012Suche in Google Scholar PubMed PubMed Central

Strohl, F., Lin, J.Q., Laine, R.F., Wong, H.H., Urbancic, V., Cagnetta, R., Holt, C.E., and Kaminski, C.F. (2017). Single molecule translation imaging visualizes the dynamics of local β-actin synthesis in retinal axons. Sci. Rep. 7, 709.10.1038/s41598-017-00695-7Suche in Google Scholar PubMed PubMed Central

Sun, Z., Diaz, Z., Fang, X., Hart, M.P., Chesi, A., Shorter, J., and Gitler, A.D. (2011). Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol. 9, e1000614.10.1371/journal.pbio.1000614Suche in Google Scholar PubMed PubMed Central

Tatavarty, V., Ifrim, M.F., Levin, M., Korza, G., Barbarese, E., Yu, J., and Carson, J.H. (2012). Single-molecule imaging of translational output from individual RNA granules in neurons. Mol. Biol. Cell 23, 918–929.10.1091/mbc.e11-07-0622Suche in Google Scholar

Taylor, J.P., Brown, R.H. Jr., and Cleveland, D.W. (2016). Decoding ALS: from genes to mechanism. Nature 539, 197–206.10.1038/nature20413Suche in Google Scholar PubMed PubMed Central

Tiruchinapalli, D.M., Oleynikov, Y., Kelic, S., Shenoy, S.M., Hartley, A., Stanton, P.K., Singer, R.H., and Bassell, G.J. (2003). Activity-dependent trafficking and dynamic localization of zipcode binding protein 1 and β-actin mRNA in dendrites and spines of hippocampal neurons. J. Neurosci. 23, 3251–3261.10.1523/JNEUROSCI.23-08-03251.2003Suche in Google Scholar

Tolino, M., Kohrmann, M., and Kiebler, M.A. (2012). RNA-binding proteins involved in RNA localization and their implications in neuronal diseases. Eur. J. Neurosci. 35, 1818–1836.10.1111/j.1460-9568.2012.08160.xSuche in Google Scholar PubMed

Tubing, F., Vendra, G., Mikl, M., Macchi, P., Thomas, S., and Kiebler, M.A. (2010). Dendritically localized transcripts are sorted into distinct ribonucleoprotein particles that display fast directional motility along dendrites of hippocampal neurons. J. Neurosci. 30, 4160–4170.10.1523/JNEUROSCI.3537-09.2010Suche in Google Scholar

Urbanska, A.S., Janusz-Kaminska, A., Switon, K., Hawthorne, A.L., Perycz, M., Urbanska, M., Bassell, G.J., and Jaworski, J. (2017). ZBP1 phosphorylation at serine 181 regulates its dendritic transport and the development of dendritic trees of hippocampal neurons. Sci. Rep. 7, 1876.10.1038/s41598-017-01963-2Suche in Google Scholar

Verkerk, A.J., Pieretti, M., Sutcliffe, J.S., Fu, Y.H., Kuhl, D.P., Pizzuti, A., Reiner, O., Richards, S., Victoria, M.F., Zhang, F.P., et al. (1991). Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914.10.1016/0092-8674(91)90397-HSuche in Google Scholar

Voigt, A., Herholz, D., Fiesel, F.C., Kaur, K., Muller, D., Karsten, P., Weber, S.S., Kahle, P. J., Marquardt, T., and Schulz, J.B. (2010). TDP-43-mediated neuron loss in vivo requires RNA-binding activity. PLoS One 5, e12247.10.1371/journal.pone.0012247Suche in Google Scholar PubMed PubMed Central

Wang, C., Han, B., Zhou, R., and Zhuang, X. (2016a). Real-time imaging of translation on single mRNA transcripts in live cells. Cell 165, 990–1001.10.1016/j.cell.2016.04.040Suche in Google Scholar PubMed PubMed Central

Wang, E.T., Taliaferro, J.M., Lee, J.A., Sudhakaran, I.P., Rossoll, W., Gross, C., Moss, K.R., and Bassell, G.J. (2016b). Dysregulation of mRNA localization and translation in genetic disease. J. Neurosci. 36, 11418–11426.10.1523/JNEUROSCI.2352-16.2016Suche in Google Scholar PubMed PubMed Central

Wang, I.F., Wu, L.S., Chang, H.Y., and Shen, C.K. (2008). TDP-43, the signature protein of FTLD-U, is a neuronal activity-responsive factor. J. Neurochem. 105, 797–806.10.1111/j.1471-4159.2007.05190.xSuche in Google Scholar PubMed

Weber, S.C. and Brangwynne, C.P. (2012). Getting RNA and protein in phase. Cell 149, 1188–1191.10.1016/j.cell.2012.05.022Suche in Google Scholar PubMed

Wong, H.H., Lin, J.Q., Strohl, F., Roque, C.G., Cioni, J.M., Cagnetta, R., Turner-Bridger, B., Laine, R.F., Harris, W.A., Kaminski, C.F., et al. (2017). RNA docking and local translation regulate site-specific axon remodeling in vivo. Neuron 95, 852–868.e858.10.1016/j.neuron.2017.07.016Suche in Google Scholar PubMed PubMed Central

Wu, H. and Fuxreiter, M. (2016). The structure and dynamics of higher-order assemblies: amyloids, signalosomes, and granules. Cell 165, 1055–1066.10.1016/j.cell.2016.05.004Suche in Google Scholar PubMed PubMed Central

Wu, B., Eliscovich, C., Yoon, Y.J., and Singer, R.H. (2016). Translation dynamics of single mRNAs in live cells and neurons. Science 352, 1430–1435.10.1126/science.aaf1084Suche in Google Scholar PubMed PubMed Central

Yao, J., Sasaki, Y., Wen, Z., Bassell, G.J., and Zheng, J.Q. (2006). An essential role for β-actin mRNA localization and translation in Ca2+-dependent growth cone guidance. Nat. Neurosci. 9, 1265–1273.10.1038/nn1773Suche in Google Scholar PubMed

Yoon, Y.J., Wu, B., Buxbaum, A.R., Das, S., Tsai, A., English, B.P., Grimm, J.B., Lavis, L.D., and Singer, R.H. (2016). Glutamate-induced RNA localization and translation in neurons. Proc. Natl. Acad. Sci. USA 113, E6877–E6886.10.1073/pnas.1614267113Suche in Google Scholar PubMed PubMed Central

Zeitelhofer, M., Karra, D., Macchi, P., Tolino, M., Thomas, S., Schwarz, M., Kiebler, M., and Dahm, R. (2008). Dynamic interaction between P-bodies and transport ribonucleoprotein particles in dendrites of mature hippocampal neurons. J. Neurosci. 28, 7555–7562.10.1523/JNEUROSCI.0104-08.2008Suche in Google Scholar PubMed PubMed Central

Zivraj, K.H., Tung, Y.C., Piper, M., Gumy, L., Fawcett, J.W., Yeo, G.S., and Holt, C.E. (2010). Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs. J. Neurosci. 30, 15464–15478.10.1523/JNEUROSCI.1800-10.2010Suche in Google Scholar PubMed PubMed Central

Received: 2018-01-31
Accepted: 2018-03-30
Published Online: 2018-04-11
Published in Print: 2018-06-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2018-0141/pdf
Button zum nach oben scrollen