Oncogenic BRAFV600E drives expression of MGL ligands in the colorectal cancer cell line HT29 through N-acetylgalactosamine-transferase 3
-
Neha M. Sahasrabudhe
Abstract
Colorectal cancer is the third most common cancer type worldwide. It is characterized by a high expression of aberrantly glycosylated ligands, such as the Tn antigen (GalNAcα1-Ser/Thr), which is a major ligand for the C-type lectin macrophage galactose-type lectin (MGL). We have previously determined that a high level of MGL ligands in colorectal tumors is associated with lower disease-free survival in patients with late stage disease, which we could attribute to the presence of oncogenic BRAFV600E mutations. Here we aimed to elucidate the downstream pathway of BRAFV600E governing high MGL ligand and Tn antigen expression. We focused on glycosylation-related enzymes involved in the synthesis or elongation of Tn antigen, N-acetylgalactosamine-transferases (GALNTs) and C1GalT1/COSMC, respectively. Both the activity and expression of C1GalT1 and COSMC were unrelated to the BRAF mutational status. In contrast, GALNT3, GALNT7 and GALNT12 were increased in colorectal cancer cells harboring the BRAFV600E mutation. Through CRISPR-Cas9 gene knockouts we could establish that GALNT3 increased MGL ligand synthesis in the HT29 cell line, while GALNT7 and GALNT12 appeared to have redundant roles. Together our results highlight a novel mechanistic pathway connecting BRAFV600E to aberrant glycosylation in colorectal cancer through GALNT3.
Acknowledgments
This work was supported by a grant from the Cancer Center Amsterdam (CCA2011-5-03, to K.L.), the Dutch Cancer Society (KWF, grant number 6779-VU-2014, to N.S.) and a EU – Horizon 2020 Marie Sklodowska-Curie Grant (No. 642870, ETN-Immunoshape to E.R.).
References
An, G., Wei, B., Xia, B., McDaniel, J.M., Ju, T., Cummings, R.D., Braun, J., and Xia, L. (2007). Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans. J. Exp. Med. 204, 1417–1429.10.1084/jem.20061929Suche in Google Scholar PubMed PubMed Central
Arnold, M., Sierra, M.S., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F. (2017). Global patterns and trends in colorectal cancer incidence and mortality. Gut 66, 683–691.10.1136/gutjnl-2015-310912Suche in Google Scholar PubMed
Bennett, E.P., Mandel, U., Clausen, H., Gerken, T.A., Fritz, T.A., and Tabak, L.A. (2012). Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 22, 736–756.10.1093/glycob/cwr182Suche in Google Scholar PubMed PubMed Central
Bergstrom, K.S. and Xia, L. (2013). Mucin-type O-glycans and their roles in intestinal homeostasis. Glycobiology 23, 1026–1037.10.1093/glycob/cwt045Suche in Google Scholar PubMed PubMed Central
Berois, N., Mazal, D., Ubillos, L., Trajtenberg, F., Nicolas, A., Sastre-Garau, X., Magdelenat, H., and Osinaga, E. (2006). UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-6 as a new immunohistochemical breast cancer marker. J. Histochem. Cytochem. 54, 317–328.10.1369/jhc.5A6783.2005Suche in Google Scholar PubMed
Cancer Genome Atlas, N. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337.10.1038/nature11252Suche in Google Scholar PubMed PubMed Central
Cantwell-Dorris, E.R., O’Leary, J.J., and Sheils, O.M. (2011). BRAFV600E: implications for carcinogenesis and molecular therapy. Mol. Cancer Ther. 10, 385–394.10.1158/1535-7163.MCT-10-0799Suche in Google Scholar PubMed
Chugh, S., Meza, J., Sheinin, Y.M., Ponnusamy, M.P., and Batra, S.K. (2016). Loss of N-acetylgalactosaminyltransferase 3 in poorly differentiated pancreatic cancer: augmented aggressiveness and aberrant ErbB family glycosylation. Br. J. Cancer 114, 1376–1386.10.1038/bjc.2016.116Suche in Google Scholar PubMed PubMed Central
Cornelissen, L.A. and Van Vliet, S.J. (2016). A bitter sweet symphony: immune responses to altered O-glycan epitopes in cancer. Biomolecules 6, E26.10.3390/biom6020026Suche in Google Scholar PubMed PubMed Central
de Freitas Junior, J.C. and Morgado-Diaz, J.A. (2016). The role of N-glycans in colorectal cancer progression: potential biomarkers and therapeutic applications. Oncotarget 7, 19395–19413.10.18632/oncotarget.6283Suche in Google Scholar PubMed PubMed Central
Dosaka-Akita, H., Kinoshita, I., Yamazaki, K., Izumi, H., Itoh, T., Katoh, H., Nishimura, M., Matsuo, K., Yamada, Y., and Kohno, K. (2002). N-acetylgalactosaminyl transferase-3 is a potential new marker for non-small cell lung cancers. Br. J. Cancer 87, 751–755.10.1038/sj.bjc.6600536Suche in Google Scholar PubMed PubMed Central
Fearon, E.R. (2011). Molecular genetics of colorectal cancer. Annu. Rev. Pathol. 6, 479–507.10.1146/annurev-pathol-011110-130235Suche in Google Scholar PubMed
Gill, D.J., Chia, J., Senewiratne, J., and Bard, F. (2010). Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes. J. Cell. Biol. 189, 843–858.10.1083/jcb.201003055Suche in Google Scholar PubMed PubMed Central
Guda, K., Moinova, H., He, J., Jamison, O., Ravi, L., Natale, L., Lutterbaugh, J., Lawrence, E., Lewis, S., Willson, J.K., et al. (2009). Inactivating germ-line and somatic mutations in polypeptide N-acetylgalactosaminyltransferase 12 in human colon cancers. Proc. Natl. Acad. Sci. USA 106, 12921–12925.10.1073/pnas.0901454106Suche in Google Scholar PubMed PubMed Central
Guinney, J., Dienstmann, R., Wang, X., de Reynies, A., Schlicker, A., Soneson, C., Marisa, L., Roepman, P., Nyamundanda, G., Angelino, P., et al. (2015). The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356.10.1038/nm.3967Suche in Google Scholar PubMed PubMed Central
Hussain, M.R., Hoessli, D.C., and Fang, M. (2016). N-acetylgalactosaminyltransferases in cancer. Oncotarget 7, 54067–54081.10.18632/oncotarget.10042Suche in Google Scholar PubMed PubMed Central
Ishikawa, M., Kitayama, J., Nariko, H., Kohno, K., and Nagawa, H. (2004). The expression pattern of UDP-N-acetyl-alpha-d-galactosamine: polypeptide N-acetylgalactosaminyl transferase-3 in early gastric carcinoma. J. Surg. Oncol. 86, 28–33.10.1002/jso.20042Suche in Google Scholar PubMed
Ishikawa, M., Kitayama, J., Kohno, K., and Nagawa, H. (2005). The expression pattern of UDP-N-acetyl-α-D-galactosamine-polypeptide N-acetyl-galactosaminyl transferase-3 in squamous cell carcinoma of the esophagus. Pathobiology 72, 139–145.10.1159/000084117Suche in Google Scholar PubMed
Iwai, T., Kudo, T., Kawamoto, R., Kubota, T., Togayachi, A., Hiruma, T., Okada, T., Kawamoto, T., Morozumi, K., and Narimatsu, H. (2005). Core 3 synthase is down-regulated in colon carcinoma and profoundly suppresses the metastatic potential of carcinoma cells. Proc. Natl. Acad. Sci. USA 102, 4572–4577.10.1073/pnas.0407983102Suche in Google Scholar PubMed PubMed Central
Jegouzo, S.A., Quintero-Martinez, A., Ouyang, X., dos Santos, A., Taylor, M.E., and Drickamer, K. (2013). Organization of the extracellular portion of the macrophage galactose receptor: a trimeric cluster of simple binding sites for N-acetylgalactosamine. Glycobiology 23, 853–864.10.1093/glycob/cwt022Suche in Google Scholar PubMed PubMed Central
Ju, T., Aryal, R.P., Stowell, C.J., and Cummings, R.D. (2008a). Regulation of protein O-glycosylation by the endoplasmic reticulum-localized molecular chaperone Cosmc. J. Cell. Biol. 182, 531–542.10.1083/jcb.200711151Suche in Google Scholar PubMed PubMed Central
Ju, T., Lanneau, G.S., Gautam, T., Wang, Y., Xia, B., Stowell, S.R., Willard, M.T., Wang, W., Xia, J.Y., Zuna, R.E., et al. (2008b). Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res. 68, 1636–1646.10.1158/0008-5472.CAN-07-2345Suche in Google Scholar PubMed
Ju, T., Xia, B., Aryal, R.P., Wang, W., Wang, Y., Ding, X., Mi, R., He, M., and Cummings, R.D. (2011). A novel fluorescent assay for T-synthase activity. Glycobiology 21, 352–362.10.1093/glycob/cwq168Suche in Google Scholar PubMed PubMed Central
Kitada, S., Yamada, S., Kuma, A., Ouchi, S., Tasaki, T., Nabeshima, A., Noguchi, H., Wang, K.Y., Shimajiri, S., Nakano, R., et al. (2013). Polypeptide N-acetylgalactosaminyl transferase 3 independently predicts high-grade tumours and poor prognosis in patients with renal cell carcinomas. Br. J. Cancer 109, 472–481.10.1038/bjc.2013.331Suche in Google Scholar PubMed PubMed Central
Klijn, C., Durinck, S., Stawiski, E.W., Haverty, P.M., Jiang, Z., Liu, H., Degenhardt, J., Mayba, O., Gnad, F., Liu, J., et al. (2015). A comprehensive transcriptional portrait of human cancer cell lines. Nat. Biotechnol. 33, 306–312.10.1038/nbt.3080Suche in Google Scholar PubMed
Lavrsen, K., Dabelsteen, S., Vakhrushev, S.Y., Levann, A.M.R., Haue, A.D., Dylander, A., Mandel, U., Hansen, L., Frodin, M., Bennett, E.P., et al. (2017). De novo expression of human polypeptide N-acetylgalactosaminyltransferase 6 (GalNAc-T6) in colon adenocarcinoma inhibits the differentiation of colonic epithelium. J. Biol. Chem. 293, 1298–1314.10.1074/jbc.M117.812826Suche in Google Scholar PubMed PubMed Central
Lenos, K., Goos, J.A., Vuist, I.M., den Uil, S.H., Delis-van Diemen, P.M., Belt, E.J., Stockmann, H.B., Bril, H., de Wit, M., Carvalho, B., et al. (2015). MGL ligand expression is correlated to BRAF mutation and associated with poor survival of stage III colon cancer patients. Oncotarget 6, 26278–26290.10.18632/oncotarget.4495Suche in Google Scholar PubMed PubMed Central
Lescar, J., Sanchez, J.F., Audfray, A., Coll, J.L., Breton, C., Mitchell, E.P., and Imberty, A. (2007). Structural basis for recognition of breast and colon cancer epitopes Tn antigen and Forssman disaccharide by Helix pomatia lectin. Glycobiology 17, 1077–1083.10.1093/glycob/cwm077Suche in Google Scholar PubMed
Li, Z., Yamada, S., Inenaga, S., Imamura, T., Wu, Y., Wang, K.Y., Shimajiri, S., Nakano, R., Izumi, H., Kohno, K., et al. (2011). Polypeptide N-acetylgalactosaminyltransferase 6 expression in pancreatic cancer is an independent prognostic factor indicating better overall survival. Br. J. Cancer 104, 1882–1889.10.1038/bjc.2011.166Suche in Google Scholar PubMed PubMed Central
Li, D., Romain, G., Flamar, A.L., Duluc, D., Dullaers, M., Li, X.H., Zurawski, S., Bosquet, N., Palucka, A.K., Le Grand, R., et al. (2012). Targeting self- and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells. J. Exp. Med. 209, 109–121.10.1084/jem.20110399Suche in Google Scholar PubMed PubMed Central
Munkley, J. and Elliott, D.J. (2016). Hallmarks of glycosylation in cancer. Oncotarget 7, 35478–35489.10.18632/oncotarget.8155Suche in Google Scholar PubMed PubMed Central
Nguyen, A.T., Chia, J., Ros, M., Hui, K.M., Saltel, F., and Bard, F. (2017). Organelle specific O-glycosylation drives MMP14 activation, tumor growth, and metastasis. Cancer Cell 32, 639–653 e6.10.1016/j.ccell.2017.10.001Suche in Google Scholar PubMed
Pinho, S.S. and Reis, C.A. (2015). Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15, 540–555.10.1038/nrc3982Suche in Google Scholar PubMed
Prahallad, A., Sun, C., Huang, S., Di Nicolantonio, F., Salazar, R., Zecchin, D., Beijersbergen, R.L., Bardelli, A., and Bernards, R. (2012). Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483, 100–103.10.1038/nature10868Suche in Google Scholar PubMed
Raes, G., Brys, L., Dahal, B.K., Brandt, J., Grooten, J., Brombacher, F., Vanham, G., Noel, W., Bogaert, P., Boonefaes, T., et al. (2005). Macrophage galactose-type C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation. J. Leukoc. Biol. 77, 321–327.10.1189/jlb.0304212Suche in Google Scholar PubMed
Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., and Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308.10.1038/nprot.2013.143Suche in Google Scholar PubMed PubMed Central
Revoredo, L., Wang, S., Bennett, E.P., Clausen, H., Moremen, K.W., Jarvis, D.L., Ten Hagen, K.G., Tabak, L.A., and Gerken, T.A. (2016). Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family. Glycobiology 26, 360–376.10.1093/glycob/cwv108Suche in Google Scholar PubMed PubMed Central
Roberts, P.J. and Der, C.J. (2007). Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291–3310.10.1038/sj.onc.1210422Suche in Google Scholar PubMed
Roth, A.D., Tejpar, S., Delorenzi, M., Yan, P., Fiocca, R., Klingbiel, D., Dietrich, D., Biesmans, B., Bodoky, G., Barone, C., et al. (2010). Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J. Clin. Oncol. 28, 466–474.10.1200/JCO.2009.23.3452Suche in Google Scholar PubMed
Samowitz, W.S., Sweeney, C., Herrick, J., Albertsen, H., Levin, T.R., Murtaugh, M.A., Wolff, R.K., and Slattery, M.L. (2005). Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 65, 6063–6069.10.1158/0008-5472.CAN-05-0404Suche in Google Scholar PubMed
Sheta, R., Woo, C.M., Roux-Dalvai, F., Fournier, F., Bourassa, S., Droit, A., Bertozzi, C.R., and Bachvarov, D. (2016). A metabolic labeling approach for glycoproteomic analysis reveals altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells. J. Proteomics 145, 91–102.10.1016/j.jprot.2016.04.009Suche in Google Scholar PubMed PubMed Central
Shibao, K., Izumi, H., Nakayama, Y., Ohta, R., Nagata, N., Nomoto, M., Matsuo, K., Yamada, Y., Kitazato, K., Itoh, H., et al. (2002). Expression of UDP-N-acetyl-alpha-D-galactosamine-polypeptide galNAc N-acetylgalactosaminyl transferase-3 in relation to differentiation and prognosis in patients with colorectal carcinoma. Cancer 94, 1939–1946.10.1002/cncr.10423Suche in Google Scholar PubMed
Theodoratou, E., Thaci, K., Agakov, F., Timofeeva, M.N., Stambuk, J., Pucic-Bakovic, M., Vuckovic, F., Orchard, P., Agakova, A., Din, F.V., et al. (2016). Glycosylation of plasma IgG in colorectal cancer prognosis. Sci. Rep. 6, 28098.10.1038/srep28098Suche in Google Scholar PubMed PubMed Central
Tian, E., Stevens, S.R., Guan, Y., Springer, D.A., Anderson, S.A., Starost, M.F., Patel, V., Ten Hagen, K.G., and Tabak, L.A. (2015). Galnt1 is required for normal heart valve development and cardiac function. PLoS One 10, e0115861.10.1371/journal.pone.0115861Suche in Google Scholar PubMed PubMed Central
van Vliet, S.J., van Liempt, E., Saeland, E., Aarnoudse, C.A., Appelmelk, B., Irimura, T., Geijtenbeek, T.B., Blixt, O., Alvarez, R., van Die, I., et al. (2005). Carbohydrate profiling reveals a distinctive role for the C-type lectin MGL in the recognition of helminth parasites and tumor antigens by dendritic cells. Int. Immunol. 17, 661–669.10.1093/intimm/dxh246Suche in Google Scholar PubMed
van Vliet, S.J., Gringhuis, S.I., Geijtenbeek, T.B., and van Kooyk, Y. (2006a). Regulation of effector T cells by antigen-presenting cells via interaction of the C-type lectin MGL with CD45. Nat. Immunol. 7, 1200–1208.10.1038/ni1390Suche in Google Scholar PubMed
van Vliet, S.J., van Liempt, E., Geijtenbeek, T.B., and van Kooyk, Y. (2006b). Differential regulation of C-type lectin expression on tolerogenic dendritic cell subsets. Immunobiology 211, 577–585.10.1016/j.imbio.2006.05.022Suche in Google Scholar PubMed
van Vliet, S.J., Bay, S., Vuist, I.M., Kalay, H., Garcia-Vallejo, J.J., Leclerc, C., and van Kooyk, Y. (2013). MGL signaling augments TLR2-mediated responses for enhanced IL-10 and TNF-alpha secretion. J. Leukoc. Biol. 94, 315–323.10.1189/jlb.1012520Suche in Google Scholar PubMed
Venderbosch, S., Nagtegaal, I.D., Maughan, T.S., Smith, C.G., Cheadle, J.P., Fisher, D., Kaplan, R., Quirke, P., Seymour, M.T., Richman, S.D., et al. (2014). Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin. Cancer Res. 20, 5322–5330.10.1158/1078-0432.CCR-14-0332Suche in Google Scholar PubMed PubMed Central
Wang, Y., Ju, T., Ding, X., Xia, B., Wang, W., Xia, L., He, M., and Cummings, R.D. (2010). Cosmc is an essential chaperone for correct protein O-glycosylation. Proc. Natl. Acad. Sci. USA 107, 9228–9233.10.1073/pnas.0914004107Suche in Google Scholar PubMed PubMed Central
Wu, Q., Liu, H.O., Liu, Y.D., Liu, W.S., Pan, D., Zhang, W.J., Yang, L., Fu, Q., Xu, J.J., and Gu, J.X. (2015). Decreased expression of hepatocyte nuclear factor 4α (Hnf4α)/microRNA-122 (miR-122) axis in hepatitis B virus-associated hepatocellular carcinoma enhances potential oncogenic GALNT10 protein activity. J. Biol. Chem. 290, 1170–1185.10.1074/jbc.M114.601203Suche in Google Scholar PubMed PubMed Central
Xia, L. and McEver, R.P. (2006). Targeted disruption of the gene encoding core 1 β1-3-galactosyltransferase (T-Synthase) causes embryonic lethality and defective angiogenesis in mice. Methods Enzymol. 416, 314–331.10.1016/S0076-6879(06)16021-8Suche in Google Scholar PubMed
Yamamoto, S., Nakamori, S., Tsujie, M., Takahashi, Y., Nagano, H., Dono, K., Umeshita, K., Sakon, M., Tomita, Y., Hoshida, Y., et al. (2004). Expression of uridine diphosphate N-acetyl-α-D-galactosamine: polypeptide N-acetylgalactosaminyl transferase 3 in adenocarcinoma of the pancreas. Pathobiology 71, 12–18.10.1159/000072957Suche in Google Scholar PubMed
Yoo, N.J., Kim, M.S., and Lee, S.H. (2008). Absence of COSMC gene mutations in breast and colorectal carcinomas. Acta. Pathol. Microbiol. Immunol. Scand. 116, 154–155.10.1111/j.1600-0463.2008.00965.xSuche in Google Scholar PubMed
Supplemental Material:
The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0120).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Highlight Issue ‘Molecular Basis of Life 2017’
- HIGHLIGHT: GBM Fall Meeting “Molecular Basis of Life 2017”
- Neuronal RNP granules: from physiological to pathological assemblies
- Regulation of LRRK2: insights from structural and biochemical analysis
- The role of (auto)-phosphorylation in the complex activation mechanism of LRRK2
- Oncogenic BRAFV600E drives expression of MGL ligands in the colorectal cancer cell line HT29 through N-acetylgalactosamine-transferase 3
- Hypoxia and serum deprivation induces glycan alterations in triple negative breast cancer cells
- Targeting autophagy for the treatment of cancer
- From molecules to patients: exploring the therapeutic role of soluble guanylate cyclase stimulators
- DNA-encoded libraries – an efficient small molecule discovery technology for the biomedical sciences
- Transcytosis of payloads that are non-covalently complexed to bispecific antibodies across the hCMEC/D3 blood-brain barrier model
- Mitochondrial contributions to neuronal development and function
- Intracellular communication between lipid droplets and peroxisomes: the Janus face of PEX19
- Protein crystallization in living cells
- Synthetic DNA filaments: from design to applications
- Spectroscopic characterization of the Co-substituted C-terminal domain of rubredoxin-2
- Twitch or swim: towards the understanding of prokaryotic motion based on the type IV pilus blueprint
Artikel in diesem Heft
- Frontmatter
- Highlight Issue ‘Molecular Basis of Life 2017’
- HIGHLIGHT: GBM Fall Meeting “Molecular Basis of Life 2017”
- Neuronal RNP granules: from physiological to pathological assemblies
- Regulation of LRRK2: insights from structural and biochemical analysis
- The role of (auto)-phosphorylation in the complex activation mechanism of LRRK2
- Oncogenic BRAFV600E drives expression of MGL ligands in the colorectal cancer cell line HT29 through N-acetylgalactosamine-transferase 3
- Hypoxia and serum deprivation induces glycan alterations in triple negative breast cancer cells
- Targeting autophagy for the treatment of cancer
- From molecules to patients: exploring the therapeutic role of soluble guanylate cyclase stimulators
- DNA-encoded libraries – an efficient small molecule discovery technology for the biomedical sciences
- Transcytosis of payloads that are non-covalently complexed to bispecific antibodies across the hCMEC/D3 blood-brain barrier model
- Mitochondrial contributions to neuronal development and function
- Intracellular communication between lipid droplets and peroxisomes: the Janus face of PEX19
- Protein crystallization in living cells
- Synthetic DNA filaments: from design to applications
- Spectroscopic characterization of the Co-substituted C-terminal domain of rubredoxin-2
- Twitch or swim: towards the understanding of prokaryotic motion based on the type IV pilus blueprint