Startseite Synthetic DNA filaments: from design to applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthetic DNA filaments: from design to applications

  • Wolfgang Pfeifer und Barbara Saccà ORCID logo EMAIL logo
Veröffentlicht/Copyright: 30. März 2018

Abstract

Natural filaments, such as microtubules and actin filaments, are fundamental components of the cell. Despite their relatively simple linear structure, filaments play a number of crucial roles in living organisms, from scaffolding to cellular adhesion and motility. The mechanical properties of natural filaments mostly rely on the structural features of the component units and on the way they are connected together, thus providing an ideal molecular model for emulation purposes. In this review, we describe the progresses done in this field using DNA for the rational design of synthetic filamentous-like materials with tailored structural and physical characteristics. We firstly survey the strategies that have been adopted until now for the construction of individual DNA building components and their programmable self-assembly into linear oligomeric structures. We then describe the theoretical models of polymer elasticity applied to calculate the bending strength of DNA filaments, expressed in terms of persistence length. Finally, we report some of the most exciting examples of truly biomimetic DNA filaments, which are capable of mimicking not only the sophisticated structural features of their natural counterparts but also their responsiveness to external stimuli, thus resulting in active motion and growing networks between distant loci.

Acknowledgment

This work was supported by the Deutsche Forschungsgemeinschaft (CRC initiative 1093 – project A6 funded to B.S. and DFG grant SA 1952/3-1 funded to B.S.).

References

Acuna, G.P., Moller, F.M., Holzmeister, P., Beater, S., Lalkens, B., and Tinnefeld, P. (2012). Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338, 506–510.10.1126/science.1228638Suche in Google Scholar PubMed

Acuna, G., Grohmann, D., and Tinnefeld, P. (2014). Enhancing single-molecule fluorescence with nanophotonics. FEBS Lett. 588, 3547–3552.10.1016/j.febslet.2014.06.016Suche in Google Scholar PubMed

Akhmanova, A. and Steinmetz, M.O. (2015). Control of microtubule organization and dynamics: two ends in the limelight. Nat. Rev. Mol. Cell Biol. 16, 711–726.10.1038/nrm4084Suche in Google Scholar PubMed

Castro, C.E., Su, H.J., Marras, A.E., Zhou, L., and Johnson, J. (2015). Mechanical design of DNA nanostructures. Nanoscale 7, 5913–5921.10.1039/C4NR07153KSuche in Google Scholar PubMed

Dietz, H., Douglas, S.M., and Shih, W.M. (2009). Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730.10.1126/science.1174251Suche in Google Scholar PubMed PubMed Central

Douglas, S.M., Chou, J.J., and Shih, W.M. (2007). DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc. Natl. Acad. Sci. USA 104, 6644–6648.10.1073/pnas.0700930104Suche in Google Scholar PubMed PubMed Central

Douglas, S.M., Dietz, H., Liedl, T., Hogberg, B., Graf, F., and Shih, W.M. (2009). Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418.10.1038/nature08016Suche in Google Scholar PubMed PubMed Central

Gerling, T., Wagenbauer, K.F., Neuner, A.M., and Dietz, H. (2015). Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347, 1446–1452.10.1126/science.aaa5372Suche in Google Scholar PubMed

Herrmann, H., Bär, H., Kreplak, L., Strelkov, S.V., and Aebi, U. (2007). Intermediate filaments: from cell architecture to nanomechanics. Nat. Rev. Mol. Cell Biol. 8, 562–573.10.1038/nrm2197Suche in Google Scholar PubMed

Hong, F., Zhang, F., Liu, Y., and Yan, H. (2017). DNA origami: scaffolds for creating higher order structures. Chem. Rev. 117, 12584–12640.10.1021/acs.chemrev.6b00825Suche in Google Scholar PubMed

Joshi, H., Kaushik, A., Seeman, N.C., and Maiti, P.K. (2016). Nanoscale structure and elasticity of pillared DNA nanotubes. ACS Nano 10, 7780–7791.10.1021/acsnano.6b03360Suche in Google Scholar PubMed

Jungmann, R., Scheible, M., Kuzyk, A., Pardatscher, G., Castro, C.E., and Simmel, F.C. (2011). DNA origami-based nanoribbons: assembly, length distribution, and twist. Nanotechnology 22, 275301.10.1088/0957-4484/22/27/275301Suche in Google Scholar PubMed

Jungmann, R., Avendano, M.S., Woehrstein, J.B., Dai, M., Shih, W.M., and Yin, P. (2014). Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 11, 313–318.10.1038/nmeth.2835Suche in Google Scholar PubMed PubMed Central

Kauert, D.J., Kurth, T., Liedl, T., and Seidel, R. (2011). Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. Nano Lett. 11, 5558–5563.10.1021/nl203503sSuche in Google Scholar PubMed

Ke, Y., Douglas, S.M., Liu, M., Sharma, J., Cheng, A., Leung, A., Liu, Y., Shih, W.M., and Yan, H. (2009). Multilayer DNA origami packed on a square lattice. J. Am. Chem. Soc. 131, 15903–15908.10.1021/ja906381ySuche in Google Scholar PubMed PubMed Central

Ke, Y., Voigt, N.V., Gothelf, K.V., and Shih, W.M. (2012). Multilayer DNA origami packed on hexagonal and hybrid lattices. J. Am. Chem. Soc. 134, 1770–1774.10.1021/ja209719kSuche in Google Scholar PubMed PubMed Central

Kuzuya, A., Wang, R., Sha, R., and Seeman, N.C. (2007). Six-helix and eight-helix DNA nanotubes assembled from half-tubes. Nano Lett. 7, 1757–1763.10.1021/nl070828kSuche in Google Scholar PubMed PubMed Central

Lamour, G., Kirkegaard, J.B., Li, H., Knowles, T.P., and Gsponer, J. (2014). Easyworm: an open-source software tool to determine the mechanical properties of worm-like chains. Source Code Biol. Med. 9, 16.10.1186/1751-0473-9-16Suche in Google Scholar PubMed PubMed Central

Li, Z., Liu, M., Wang, L., Nangreave, J., Yan, H., and Liu, Y. (2010). Molecular behavior of DNA origami in higher-order self-assembly. J. Am. Chem. Soc. 132, 13545–13552.10.1021/ja106292xSuche in Google Scholar PubMed PubMed Central

Liedl, T., Hogberg, B., Tytell, J., Ingber, D.E., and Shih, W.M. (2010). Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nat. Nanotechnol. 5, 520–524.10.1038/nnano.2010.107Suche in Google Scholar PubMed PubMed Central

List, J., Falgenhauer, E., Kopperger, E., Pardatscher, G., and Simmel, F.C. (2016). Long-range movement of large mechanically interlocked DNA nanostructures. Nat. Commun. 7, 12414.10.1038/ncomms12414Suche in Google Scholar PubMed PubMed Central

Liu, D., Park, S.H., Reif, J.H., and LaBean, T.H. (2004). DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. Proc. Natl. Acad. Sci. USA 101, 717–722.10.1073/pnas.0305860101Suche in Google Scholar PubMed PubMed Central

Maier, A.M., Weig, C., Oswald, P., Frey, E., Fischer, P., and Liedl, T. (2016). Magnetic propulsion of microswimmers with DNA-based flagellar bundles. Nano Lett. 16, 906–910.10.1021/acs.nanolett.5b03716Suche in Google Scholar PubMed PubMed Central

Maier, A.M., Bae, W., Schiffels, D., Emmerig, J.F., Schiff, M., and Liedl, T. (2017). Self-assembled DNA tubes forming helices of controlled diameter and chirality. ACS Nano 11, 1301–1306.10.1021/acsnano.6b05602Suche in Google Scholar PubMed PubMed Central

Mathieu, F., Liao, S., Kopatsch, J., Wang, T., Mao, C., and Seeman, N.C. (2005). Six-helix bundles designed from DNA. Nano Lett. 5, 661–665.10.1021/nl050084fSuche in Google Scholar PubMed PubMed Central

Mohammed, A.M., Sulc, P., Zenk, J., and Schulman, R. (2017). Self-assembling DNA nanotubes to connect molecular landmarks. Nat. Nanotechnol. 12, 312–316.10.1038/nnano.2016.277Suche in Google Scholar PubMed

O’Neill, P., Rothemund, P.W., Kumar, A., and Fygenson, D.K. (2006). Sturdier DNA nanotubes via ligation. Nano Lett. 6, 1379–1383.10.1021/nl0603505Suche in Google Scholar PubMed

Pfeifer, W. and Saccà, B. (2016). From nano to macro through hierarchical self-assembly: the DNA paradigm. Chembiochem 17, 1063–1080.10.1002/cbic.201600034Suche in Google Scholar PubMed

Pfeifer, W., Lill, P., Gatsogiannis, C., and Saccà, B. (2018). Hierarchical assembly of DNA filaments with designer elastic properties. ACS Nano 12, 44–55.10.1021/acsnano.7b06012Suche in Google Scholar PubMed

Pombo, A. and Dillon, N. (2015). Three-dimensional genome architecture: players and mechanisms. Nat. Rev. Mol. Cell Biol. 16, 245–257.10.1038/nrm3965Suche in Google Scholar PubMed

Powell, J.T., Akhuetie-Oni, B.O., Zhang, Z., and Lin, C. (2016). DNA origami rotaxanes: tailored synthesis and controlled structure switching. Angew. Chem. Int. Ed. 55, 11412–11416.10.1002/anie.201604621Suche in Google Scholar

Revenu, C., Athman, R., Robine, S., and Louvard, D. (2004). The co-workers of actin filaments: from cell structures to signals. Nat. Rev. Mol. Cell Biol. 5, 635–646.10.1038/nrm1437Suche in Google Scholar

Rivetti, C., Guthold, M., and Bustamante, C. (1996). Scanning force microscopy of DNA deposited onto mica: equilibration versus kinetic trapping studied by statistical polymer chain analysis. J. Mol. Biol. 264, 919–932.10.1006/jmbi.1996.0687Suche in Google Scholar

Rivetti, C., Walker, C., and Bustamante, C. (1998). Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility. J. Mol. Biol. 280, 41–59.10.1006/jmbi.1998.1830Suche in Google Scholar

Rod, P., Jane, K., Julie, T., and G., G.H. (2013). Physical Biology of the Cell (New York, USA: Garland Science, Taylor & Francis.).Suche in Google Scholar

Rothemund, P.W. (2006). Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302.10.1038/nature04586Suche in Google Scholar

Rothemund, P.W., Ekani-Nkodo, A., Papadakis, N., Kumar, A., Fygenson, D.K., and Winfree, E. (2004). Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc. 126, 16344–16352.10.1021/ja044319lSuche in Google Scholar

Schiffels, D., Liedl, T., and Fygenson, D.K. (2013). Nanoscale structure and microscale stiffness of DNA nanotubes. ACS Nano 7, 6700–6710.10.1021/nn401362pSuche in Google Scholar

Schulman, R. and Winfree, E. (2007). Synthesis of crystals with a programmable kinetic barrier to nucleation. Proc. Natl. Acad. Sci. USA 104, 15236–15241.10.1073/pnas.0701467104Suche in Google Scholar

Seeman, N.C. (1982). Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247.10.1016/0022-5193(82)90002-9Suche in Google Scholar

Seeman, N.C. (2003). DNA in a material world. Nature 421, 427–431.10.1038/nature01406Suche in Google Scholar PubMed

Seeman, N.C. and Kallenbach, N.R. (1994). DNA branched junctions. Annu. Rev. Biophys. Biomol. Struct. 23, 53–86.10.1146/annurev.bb.23.060194.000413Suche in Google Scholar PubMed

Smith, S.B., Finzi, L., and Bustamante, C. (1992). Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122–1126.10.1126/science.1439819Suche in Google Scholar PubMed

Wang, R., Liu, W., and Seeman, N.C. (2009). Prototyping nanorod control: a DNA double helix sheathed within a DNA six-helix bundle. Chem. Biol. 16, 862–867.10.1016/j.chembiol.2009.07.008Suche in Google Scholar PubMed

Wang, T., Schiffels, D., Cuesta, S.M., Fygenson, D.K., and Seeman, N.C. (2012). Design and characterization of 1D nanotubes and 2D periodic arrays self-assembled from DNA multi-helix bundles. J. Am. Chem. Soc. 134, 1606–1616.10.1021/ja207976qSuche in Google Scholar PubMed PubMed Central

Winfree, E., Liu, F., Wenzler, L.A., and Seeman, N.C. (1998). Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544.10.1038/28998Suche in Google Scholar PubMed

Woo, S. and Rothemund, P.W. (2011). Programmable molecular recognition based on the geometry of DNA nanostructures. Nat. Chem. 3, 620–627.10.1038/nchem.1070Suche in Google Scholar PubMed

Woodside, M.T., Anthony, P.C., Behnke-Parks, W.M., Larizadeh, K., Herschlag, D., and Block, S.M. (2006a). Direct measurement of the full, sequence-dependent folding landscape of a nucleic acid. Science 314, 1001–1004.10.1126/science.1133601Suche in Google Scholar PubMed PubMed Central

Woodside, M.T., Behnke-Parks, W.M., Larizadeh, K., Travers, K., Herschlag, D., and Block, S.M. (2006b). Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proc. Natl. Acad. Sci. USA 103, 6190–6195.10.1073/pnas.0511048103Suche in Google Scholar PubMed PubMed Central

Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., and LaBean, T.H. (2003). DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science. 301, 1882–1884.10.1126/science.1089389Suche in Google Scholar PubMed

Yin, P., Hariadi, R.F., Sahu, S., Choi, H.M., Park, S.H., Labean, T.H., and Reif, J.H. (2008). Programming DNA tube circumferences. Science 321, 824–826.10.1126/science.1157312Suche in Google Scholar PubMed

Zhang, Z., Song, J., Besenbacher, F., Dong, M., and Gothelf, K.V. (2013). Self-assembly of DNA origami and single-stranded tile structures at room temperature. Angew. Chem. Int. Ed. 52, 9219–9223.10.1002/anie.201303611Suche in Google Scholar PubMed

Zhang, F., Nangreave, J., Liu, Y., and Yan, H. (2014). Structural DNA nanotechnology: state of the art and future perspective. J. Am. Chem. Soc. 136, 11198–11211.10.1021/ja505101aSuche in Google Scholar PubMed PubMed Central

Zhang, T., Hartl, C., Fischer, S., Frank, K., Nickels, P., Heuer-Jungemann, A., Nickel, B., and Liedl, T. (2017). 3D DNA origami crystals. arXiv.1706.06965v1.10.1002/adma.201800273Suche in Google Scholar

Zhou, L., Marras, A.E., Su, H.J., and Castro, C.E. (2014). DNA origami compliant nanostructures with tunable mechanical properties. ACS Nano 8, 27–34.10.1021/nn405408gSuche in Google Scholar PubMed

Received: 2018-01-09
Accepted: 2018-03-25
Published Online: 2018-03-30
Published in Print: 2018-06-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2018-0110/pdf
Button zum nach oben scrollen