Abstract
Natural filaments, such as microtubules and actin filaments, are fundamental components of the cell. Despite their relatively simple linear structure, filaments play a number of crucial roles in living organisms, from scaffolding to cellular adhesion and motility. The mechanical properties of natural filaments mostly rely on the structural features of the component units and on the way they are connected together, thus providing an ideal molecular model for emulation purposes. In this review, we describe the progresses done in this field using DNA for the rational design of synthetic filamentous-like materials with tailored structural and physical characteristics. We firstly survey the strategies that have been adopted until now for the construction of individual DNA building components and their programmable self-assembly into linear oligomeric structures. We then describe the theoretical models of polymer elasticity applied to calculate the bending strength of DNA filaments, expressed in terms of persistence length. Finally, we report some of the most exciting examples of truly biomimetic DNA filaments, which are capable of mimicking not only the sophisticated structural features of their natural counterparts but also their responsiveness to external stimuli, thus resulting in active motion and growing networks between distant loci.
Acknowledgment
This work was supported by the Deutsche Forschungsgemeinschaft (CRC initiative 1093 – project A6 funded to B.S. and DFG grant SA 1952/3-1 funded to B.S.).
References
Acuna, G.P., Moller, F.M., Holzmeister, P., Beater, S., Lalkens, B., and Tinnefeld, P. (2012). Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338, 506–510.10.1126/science.1228638Suche in Google Scholar PubMed
Acuna, G., Grohmann, D., and Tinnefeld, P. (2014). Enhancing single-molecule fluorescence with nanophotonics. FEBS Lett. 588, 3547–3552.10.1016/j.febslet.2014.06.016Suche in Google Scholar PubMed
Akhmanova, A. and Steinmetz, M.O. (2015). Control of microtubule organization and dynamics: two ends in the limelight. Nat. Rev. Mol. Cell Biol. 16, 711–726.10.1038/nrm4084Suche in Google Scholar PubMed
Castro, C.E., Su, H.J., Marras, A.E., Zhou, L., and Johnson, J. (2015). Mechanical design of DNA nanostructures. Nanoscale 7, 5913–5921.10.1039/C4NR07153KSuche in Google Scholar PubMed
Dietz, H., Douglas, S.M., and Shih, W.M. (2009). Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730.10.1126/science.1174251Suche in Google Scholar PubMed PubMed Central
Douglas, S.M., Chou, J.J., and Shih, W.M. (2007). DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc. Natl. Acad. Sci. USA 104, 6644–6648.10.1073/pnas.0700930104Suche in Google Scholar PubMed PubMed Central
Douglas, S.M., Dietz, H., Liedl, T., Hogberg, B., Graf, F., and Shih, W.M. (2009). Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418.10.1038/nature08016Suche in Google Scholar PubMed PubMed Central
Gerling, T., Wagenbauer, K.F., Neuner, A.M., and Dietz, H. (2015). Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347, 1446–1452.10.1126/science.aaa5372Suche in Google Scholar PubMed
Herrmann, H., Bär, H., Kreplak, L., Strelkov, S.V., and Aebi, U. (2007). Intermediate filaments: from cell architecture to nanomechanics. Nat. Rev. Mol. Cell Biol. 8, 562–573.10.1038/nrm2197Suche in Google Scholar PubMed
Hong, F., Zhang, F., Liu, Y., and Yan, H. (2017). DNA origami: scaffolds for creating higher order structures. Chem. Rev. 117, 12584–12640.10.1021/acs.chemrev.6b00825Suche in Google Scholar PubMed
Joshi, H., Kaushik, A., Seeman, N.C., and Maiti, P.K. (2016). Nanoscale structure and elasticity of pillared DNA nanotubes. ACS Nano 10, 7780–7791.10.1021/acsnano.6b03360Suche in Google Scholar PubMed
Jungmann, R., Scheible, M., Kuzyk, A., Pardatscher, G., Castro, C.E., and Simmel, F.C. (2011). DNA origami-based nanoribbons: assembly, length distribution, and twist. Nanotechnology 22, 275301.10.1088/0957-4484/22/27/275301Suche in Google Scholar PubMed
Jungmann, R., Avendano, M.S., Woehrstein, J.B., Dai, M., Shih, W.M., and Yin, P. (2014). Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 11, 313–318.10.1038/nmeth.2835Suche in Google Scholar PubMed PubMed Central
Kauert, D.J., Kurth, T., Liedl, T., and Seidel, R. (2011). Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. Nano Lett. 11, 5558–5563.10.1021/nl203503sSuche in Google Scholar PubMed
Ke, Y., Douglas, S.M., Liu, M., Sharma, J., Cheng, A., Leung, A., Liu, Y., Shih, W.M., and Yan, H. (2009). Multilayer DNA origami packed on a square lattice. J. Am. Chem. Soc. 131, 15903–15908.10.1021/ja906381ySuche in Google Scholar PubMed PubMed Central
Ke, Y., Voigt, N.V., Gothelf, K.V., and Shih, W.M. (2012). Multilayer DNA origami packed on hexagonal and hybrid lattices. J. Am. Chem. Soc. 134, 1770–1774.10.1021/ja209719kSuche in Google Scholar PubMed PubMed Central
Kuzuya, A., Wang, R., Sha, R., and Seeman, N.C. (2007). Six-helix and eight-helix DNA nanotubes assembled from half-tubes. Nano Lett. 7, 1757–1763.10.1021/nl070828kSuche in Google Scholar PubMed PubMed Central
Lamour, G., Kirkegaard, J.B., Li, H., Knowles, T.P., and Gsponer, J. (2014). Easyworm: an open-source software tool to determine the mechanical properties of worm-like chains. Source Code Biol. Med. 9, 16.10.1186/1751-0473-9-16Suche in Google Scholar PubMed PubMed Central
Li, Z., Liu, M., Wang, L., Nangreave, J., Yan, H., and Liu, Y. (2010). Molecular behavior of DNA origami in higher-order self-assembly. J. Am. Chem. Soc. 132, 13545–13552.10.1021/ja106292xSuche in Google Scholar PubMed PubMed Central
Liedl, T., Hogberg, B., Tytell, J., Ingber, D.E., and Shih, W.M. (2010). Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nat. Nanotechnol. 5, 520–524.10.1038/nnano.2010.107Suche in Google Scholar PubMed PubMed Central
List, J., Falgenhauer, E., Kopperger, E., Pardatscher, G., and Simmel, F.C. (2016). Long-range movement of large mechanically interlocked DNA nanostructures. Nat. Commun. 7, 12414.10.1038/ncomms12414Suche in Google Scholar PubMed PubMed Central
Liu, D., Park, S.H., Reif, J.H., and LaBean, T.H. (2004). DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. Proc. Natl. Acad. Sci. USA 101, 717–722.10.1073/pnas.0305860101Suche in Google Scholar PubMed PubMed Central
Maier, A.M., Weig, C., Oswald, P., Frey, E., Fischer, P., and Liedl, T. (2016). Magnetic propulsion of microswimmers with DNA-based flagellar bundles. Nano Lett. 16, 906–910.10.1021/acs.nanolett.5b03716Suche in Google Scholar PubMed PubMed Central
Maier, A.M., Bae, W., Schiffels, D., Emmerig, J.F., Schiff, M., and Liedl, T. (2017). Self-assembled DNA tubes forming helices of controlled diameter and chirality. ACS Nano 11, 1301–1306.10.1021/acsnano.6b05602Suche in Google Scholar PubMed PubMed Central
Mathieu, F., Liao, S., Kopatsch, J., Wang, T., Mao, C., and Seeman, N.C. (2005). Six-helix bundles designed from DNA. Nano Lett. 5, 661–665.10.1021/nl050084fSuche in Google Scholar PubMed PubMed Central
Mohammed, A.M., Sulc, P., Zenk, J., and Schulman, R. (2017). Self-assembling DNA nanotubes to connect molecular landmarks. Nat. Nanotechnol. 12, 312–316.10.1038/nnano.2016.277Suche in Google Scholar PubMed
O’Neill, P., Rothemund, P.W., Kumar, A., and Fygenson, D.K. (2006). Sturdier DNA nanotubes via ligation. Nano Lett. 6, 1379–1383.10.1021/nl0603505Suche in Google Scholar PubMed
Pfeifer, W. and Saccà, B. (2016). From nano to macro through hierarchical self-assembly: the DNA paradigm. Chembiochem 17, 1063–1080.10.1002/cbic.201600034Suche in Google Scholar PubMed
Pfeifer, W., Lill, P., Gatsogiannis, C., and Saccà, B. (2018). Hierarchical assembly of DNA filaments with designer elastic properties. ACS Nano 12, 44–55.10.1021/acsnano.7b06012Suche in Google Scholar PubMed
Pombo, A. and Dillon, N. (2015). Three-dimensional genome architecture: players and mechanisms. Nat. Rev. Mol. Cell Biol. 16, 245–257.10.1038/nrm3965Suche in Google Scholar PubMed
Powell, J.T., Akhuetie-Oni, B.O., Zhang, Z., and Lin, C. (2016). DNA origami rotaxanes: tailored synthesis and controlled structure switching. Angew. Chem. Int. Ed. 55, 11412–11416.10.1002/anie.201604621Suche in Google Scholar
Revenu, C., Athman, R., Robine, S., and Louvard, D. (2004). The co-workers of actin filaments: from cell structures to signals. Nat. Rev. Mol. Cell Biol. 5, 635–646.10.1038/nrm1437Suche in Google Scholar
Rivetti, C., Guthold, M., and Bustamante, C. (1996). Scanning force microscopy of DNA deposited onto mica: equilibration versus kinetic trapping studied by statistical polymer chain analysis. J. Mol. Biol. 264, 919–932.10.1006/jmbi.1996.0687Suche in Google Scholar
Rivetti, C., Walker, C., and Bustamante, C. (1998). Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility. J. Mol. Biol. 280, 41–59.10.1006/jmbi.1998.1830Suche in Google Scholar
Rod, P., Jane, K., Julie, T., and G., G.H. (2013). Physical Biology of the Cell (New York, USA: Garland Science, Taylor & Francis.).Suche in Google Scholar
Rothemund, P.W. (2006). Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302.10.1038/nature04586Suche in Google Scholar
Rothemund, P.W., Ekani-Nkodo, A., Papadakis, N., Kumar, A., Fygenson, D.K., and Winfree, E. (2004). Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc. 126, 16344–16352.10.1021/ja044319lSuche in Google Scholar
Schiffels, D., Liedl, T., and Fygenson, D.K. (2013). Nanoscale structure and microscale stiffness of DNA nanotubes. ACS Nano 7, 6700–6710.10.1021/nn401362pSuche in Google Scholar
Schulman, R. and Winfree, E. (2007). Synthesis of crystals with a programmable kinetic barrier to nucleation. Proc. Natl. Acad. Sci. USA 104, 15236–15241.10.1073/pnas.0701467104Suche in Google Scholar
Seeman, N.C. (1982). Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247.10.1016/0022-5193(82)90002-9Suche in Google Scholar
Seeman, N.C. (2003). DNA in a material world. Nature 421, 427–431.10.1038/nature01406Suche in Google Scholar PubMed
Seeman, N.C. and Kallenbach, N.R. (1994). DNA branched junctions. Annu. Rev. Biophys. Biomol. Struct. 23, 53–86.10.1146/annurev.bb.23.060194.000413Suche in Google Scholar PubMed
Smith, S.B., Finzi, L., and Bustamante, C. (1992). Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122–1126.10.1126/science.1439819Suche in Google Scholar PubMed
Wang, R., Liu, W., and Seeman, N.C. (2009). Prototyping nanorod control: a DNA double helix sheathed within a DNA six-helix bundle. Chem. Biol. 16, 862–867.10.1016/j.chembiol.2009.07.008Suche in Google Scholar PubMed
Wang, T., Schiffels, D., Cuesta, S.M., Fygenson, D.K., and Seeman, N.C. (2012). Design and characterization of 1D nanotubes and 2D periodic arrays self-assembled from DNA multi-helix bundles. J. Am. Chem. Soc. 134, 1606–1616.10.1021/ja207976qSuche in Google Scholar PubMed PubMed Central
Winfree, E., Liu, F., Wenzler, L.A., and Seeman, N.C. (1998). Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544.10.1038/28998Suche in Google Scholar PubMed
Woo, S. and Rothemund, P.W. (2011). Programmable molecular recognition based on the geometry of DNA nanostructures. Nat. Chem. 3, 620–627.10.1038/nchem.1070Suche in Google Scholar PubMed
Woodside, M.T., Anthony, P.C., Behnke-Parks, W.M., Larizadeh, K., Herschlag, D., and Block, S.M. (2006a). Direct measurement of the full, sequence-dependent folding landscape of a nucleic acid. Science 314, 1001–1004.10.1126/science.1133601Suche in Google Scholar PubMed PubMed Central
Woodside, M.T., Behnke-Parks, W.M., Larizadeh, K., Travers, K., Herschlag, D., and Block, S.M. (2006b). Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proc. Natl. Acad. Sci. USA 103, 6190–6195.10.1073/pnas.0511048103Suche in Google Scholar PubMed PubMed Central
Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., and LaBean, T.H. (2003). DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science. 301, 1882–1884.10.1126/science.1089389Suche in Google Scholar PubMed
Yin, P., Hariadi, R.F., Sahu, S., Choi, H.M., Park, S.H., Labean, T.H., and Reif, J.H. (2008). Programming DNA tube circumferences. Science 321, 824–826.10.1126/science.1157312Suche in Google Scholar PubMed
Zhang, Z., Song, J., Besenbacher, F., Dong, M., and Gothelf, K.V. (2013). Self-assembly of DNA origami and single-stranded tile structures at room temperature. Angew. Chem. Int. Ed. 52, 9219–9223.10.1002/anie.201303611Suche in Google Scholar PubMed
Zhang, F., Nangreave, J., Liu, Y., and Yan, H. (2014). Structural DNA nanotechnology: state of the art and future perspective. J. Am. Chem. Soc. 136, 11198–11211.10.1021/ja505101aSuche in Google Scholar PubMed PubMed Central
Zhang, T., Hartl, C., Fischer, S., Frank, K., Nickels, P., Heuer-Jungemann, A., Nickel, B., and Liedl, T. (2017). 3D DNA origami crystals. arXiv.1706.06965v1.10.1002/adma.201800273Suche in Google Scholar
Zhou, L., Marras, A.E., Su, H.J., and Castro, C.E. (2014). DNA origami compliant nanostructures with tunable mechanical properties. ACS Nano 8, 27–34.10.1021/nn405408gSuche in Google Scholar PubMed
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Highlight Issue ‘Molecular Basis of Life 2017’
- HIGHLIGHT: GBM Fall Meeting “Molecular Basis of Life 2017”
- Neuronal RNP granules: from physiological to pathological assemblies
- Regulation of LRRK2: insights from structural and biochemical analysis
- The role of (auto)-phosphorylation in the complex activation mechanism of LRRK2
- Oncogenic BRAFV600E drives expression of MGL ligands in the colorectal cancer cell line HT29 through N-acetylgalactosamine-transferase 3
- Hypoxia and serum deprivation induces glycan alterations in triple negative breast cancer cells
- Targeting autophagy for the treatment of cancer
- From molecules to patients: exploring the therapeutic role of soluble guanylate cyclase stimulators
- DNA-encoded libraries – an efficient small molecule discovery technology for the biomedical sciences
- Transcytosis of payloads that are non-covalently complexed to bispecific antibodies across the hCMEC/D3 blood-brain barrier model
- Mitochondrial contributions to neuronal development and function
- Intracellular communication between lipid droplets and peroxisomes: the Janus face of PEX19
- Protein crystallization in living cells
- Synthetic DNA filaments: from design to applications
- Spectroscopic characterization of the Co-substituted C-terminal domain of rubredoxin-2
- Twitch or swim: towards the understanding of prokaryotic motion based on the type IV pilus blueprint
Artikel in diesem Heft
- Frontmatter
- Highlight Issue ‘Molecular Basis of Life 2017’
- HIGHLIGHT: GBM Fall Meeting “Molecular Basis of Life 2017”
- Neuronal RNP granules: from physiological to pathological assemblies
- Regulation of LRRK2: insights from structural and biochemical analysis
- The role of (auto)-phosphorylation in the complex activation mechanism of LRRK2
- Oncogenic BRAFV600E drives expression of MGL ligands in the colorectal cancer cell line HT29 through N-acetylgalactosamine-transferase 3
- Hypoxia and serum deprivation induces glycan alterations in triple negative breast cancer cells
- Targeting autophagy for the treatment of cancer
- From molecules to patients: exploring the therapeutic role of soluble guanylate cyclase stimulators
- DNA-encoded libraries – an efficient small molecule discovery technology for the biomedical sciences
- Transcytosis of payloads that are non-covalently complexed to bispecific antibodies across the hCMEC/D3 blood-brain barrier model
- Mitochondrial contributions to neuronal development and function
- Intracellular communication between lipid droplets and peroxisomes: the Janus face of PEX19
- Protein crystallization in living cells
- Synthetic DNA filaments: from design to applications
- Spectroscopic characterization of the Co-substituted C-terminal domain of rubredoxin-2
- Twitch or swim: towards the understanding of prokaryotic motion based on the type IV pilus blueprint